liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar Cells: A Transient Photocurrent and Photovoltage Study
University of Cambridge, England.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2582-1740
University of Cambridge, England.
University of Cambridge, England.
2011 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 21, no 8, 1419-1431 p.Article in journal (Refereed) Published
Abstract [en]

We utilize transient techniques to directly compare the operation of polymer/fullerene, polymer/nanocrystal, and polymer/polymer bulk heterojunction solar cells. For all devices, poly(3-hexylthiophene) (P3HT) is used as the electron donating polymer, in combination with either the fullerene derivative phenyl-C(61)-butyric acid methyl ester (PCBM) in polymer/fullerene cells, CdSe nanoparticles in polymer/nanocrystal cells, or the polyfluorene copolymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3- benzothiadiazole]-2,2-diyl) (F8TBT) in polymer/polymer cells. Transient photocurrent and photovoltage measurements are used to probe the dynamics of charge-separated carriers, with vastly different dynamic behavior observed for polymer/fullerene, polymer/polymer, and polymer/nanocrystal devices on the microsecond to millisecond timescale. Furthermore, by employing transient photocurrent analysis with different applied voltages we are also able to probe the dynamics behavior of these cells from short circuit to open circuit. P3HT/F8TBT and P3HT/CdSe devices are characterized by poor charge extraction of the long-lived carriers attributed to charge trapping. P3HT/PCBM devices, in contrast, show relatively trap-free operation with the variation in the photocurrent decay kinetics with applied bias at low intensity, consistent with the drift of free charges under a uniform electric field. Under solar conditions at the maximum power point, we see direct evidence of bimolecular recombination in the P3HT/PCBM device competing with charge extraction. Transient photovoltage measurements reveal that, at open circuit, photogenerated charges have similar lifetimes in all device types, and hence, the extraction of these long-lived charges is a limiting process in polymer/nanocrystal and polymer/polymer devices.

Place, publisher, year, edition, pages
Wiley-VCH Verlag , 2011. Vol. 21, no 8, 1419-1431 p.
National Category
Physical Chemistry
URN: urn:nbn:se:liu:diva-115691DOI: 10.1002/adfm.201002154ISI: 000289638500010OAI: diva2:796107

Funding Agencies|EPSRC Supergen Excitonic Solar Cell Consortium [EP/G031088/1]; EPSRC [EP/E051804/1]; Cambridge Overseas Trust; Mott Physics of the Environment Award

Available from: 2015-03-18 Created: 2015-03-18 Last updated: 2015-03-31

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gao, Feng
By organisation
Biomolecular and Organic ElectronicsThe Institute of Technology
In the same journal
Advanced Functional Materials
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 63 hits
ReferencesLink to record
Permanent link

Direct link