liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dominant negative inhibition data should be analyzed using mathematical modeling - re-interpreting data from insulin signaling.
Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. (Integrative Systems Biology)
Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
Show others and affiliations
2015 (English)In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 282, no 4, 788-802 p.Article in journal (Refereed) Published
Abstract [en]

As our ability to measure the complexity of intracellular networks has evolved, it has become increasingly clear that we need new methods for data analysis: methods involving mathematical modeling. Nevertheless, it is still uncontroversial to publish and interpret experimental results without a model-based proof that the reasoning is correct. In the present study, we argue that this attitude probably needs to change in the future. We illustrate this need for modeling by considering the common experimental technique of using dominant-negative constructs. More specifically, we consider published time-series and dose-response data which previously have been used to argue that the protein S6 kinase does not phosphorylate insulin receptor substrate-1 at a specific serine residue. Using a presented general approach to interpret such data, we now demonstrate that the given dominant-negative data are not conclusive (i.e. that in the absence of other proofs, S6 kinase still may be the kinase). Using simulations with uncertainty analysis and analytical solutions, we show that an alternative explanation is centered around depletion of substrate, which can be tested experimentally. This analysis thus illustrates both the necessity and the benefits of using mathematical modeling to fully understand the implications of biological data, even for a small system and relatively simple data.

Place, publisher, year, edition, pages
2015. Vol. 282, no 4, 788-802 p.
Keyword [en]
insulin signalling, dominant negative data, mathematical modelling
National Category
Bioinformatics and Systems Biology
Identifiers
URN: urn:nbn:se:liu:diva-115805DOI: 10.1111/febs.13182ISI: 000350288300011PubMedID: 25546185OAI: oai:DiVA.org:liu-115805DiVA: diva2:796746
Funder
Swedish Research Council
Available from: 2015-03-20 Created: 2015-03-20 Last updated: 2017-12-04
In thesis
1. Model-Based Hypothesis Testing in Biomedicine: How Systems Biology Can Drive the Growth of Scientific Knowledge
Open this publication in new window or tab >>Model-Based Hypothesis Testing in Biomedicine: How Systems Biology Can Drive the Growth of Scientific Knowledge
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model.

Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data.

In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination.

In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques.

Abstract [sv]

Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output.

Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950‑talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data.

I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering.

Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. 102 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1877
Keyword
systems biology, modeling, ODE, hypothesis testing, falsificationism, insulin signaling, yeast, population heterogeneity, cell-to-cell variation, facilitation, pyramidal, synaptic, bootstrapping, personalized medicine, omics
National Category
Bioinformatics and Systems Biology
Identifiers
urn:nbn:se:liu:diva-141614 (URN)10.3384/diss.diva-141614 (DOI)9789176854570 (ISBN)
Public defence
2017-11-03, Hugo Theorell, Campus US, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2017-10-03 Created: 2017-10-03 Last updated: 2017-10-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Jullesson, DavidJohansson, RikardRohini Rajan, MeenuStrålfors, PeterCedersund, Gunnar

Search in DiVA

By author/editor
Jullesson, DavidJohansson, RikardRohini Rajan, MeenuStrålfors, PeterCedersund, Gunnar
By organisation
Department of Biomedical EngineeringThe Institute of TechnologyDivision of Cell BiologyFaculty of Medicine and Health SciencesFaculty of Health SciencesFaculty of Science & Engineering
In the same journal
The FEBS Journal
Bioinformatics and Systems Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 279 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf