liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low-complexity polynomial channel estimation in large-scale MIMO with arbitrary statistics
Department of Signal Processing, KTH Royal Institute of TechnologyStockholm, Sweden.
Alcatel-Lucent Department on Flexible Radio, SupélecGif-sur-Yvette, France.
Department of Signal Processing, KTH Royal Institute of TechnologyStockholm, Sweden.
Alcatel-Lucent Department on Flexible Radio, SupélecGif-sur-Yvette, France.
2014 (English)In: IEEE Journal on Selected Topics in Signal Processing, ISSN 1932-4553, E-ISSN 1941-0484, Vol. 8, no 5, 815-830 p.Article in journal (Refereed) Published
Abstract [en]

This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as massive MIMO, where there are hundreds of antennas at one side of the link. Motivated by the fact that computational complexity is one of the main challenges in such systems, a set of low-complexity Bayesian channel estimators, coined Polynomial ExpAnsion CHannel (PEACH) estimators, are introduced for arbitrary channel and interference statistics. While the conventional minimum mean square error (MMSE) estimator has cubic complexity in the dimension of the covariance matrices, due to an inversion operation, our proposed estimators significantly reduce this to square complexity by approximating the inverse by a $L$-degree matrix polynomial. The coefficients of the polynomial are optimized to minimize the mean square error (MSE) of the estimate. We show numerically that near-optimal MSEs are achieved with low polynomial degrees. We also derive the exact computational complexity of the proposed estimators, in terms of the floating-point operations (FLOPs), by which we prove that the proposed estimators outperform the conventional estimators in large-scale MIMO systems of practical dimensions while providing a reasonable MSEs. Moreover, we show that $L$ needs not scale with the system dimensions to maintain a certain normalized MSE. By analyzing different interference scenarios, we observe that the relative MSE loss of using the low-complexity PEACH estimators is smaller in realistic scenarios with pilot contamination. On the other hand, PEACH estimators are not well suited for noise-limited scenarios with high pilot power; therefore, we also introduce the low-complexity diagonalized estimator that performs well in this regime. Finally, we also investigate numerically how the estimation performance is affected by having imperfect statistical knowledge. High robustness is achieved for large-dimensional matrices by using a new covariance estimate which is an affine function of the sample covariance matrix and a regularization term.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2014. Vol. 8, no 5, 815-830 p.
Keyword [en]
Channel estimation; large-scale MIMO; pilot contamination; polynomial expansion; spatial correlation
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-116369DOI: 10.1109/JSTSP.2014.2316063Scopus ID: 2-s2.0-84907218156OAI: oai:DiVA.org:liu-116369DiVA: diva2:798754
Available from: 2015-03-27 Created: 2015-03-26 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

fulltext(425 kB)43 downloads
File information
File name FULLTEXT01.pdfFile size 425 kBChecksum SHA-512
52078a6750273dc11d00e9df3a09fa02ff56bf198f1f48d628380ed167da976ee5af76458a2e864d125d1bce18bcbbc1323d10a99fd2100d63c2125b2d9e33d7
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Björnson, Emil

Search in DiVA

By author/editor
Björnson, Emil
In the same journal
IEEE Journal on Selected Topics in Signal Processing
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 43 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 377 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf