liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanical behaviors of alloy 617 with varied strain rates at high temperatures
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Sandvik Materials Technology, Strategy research, SE-81181 Sandviken, Sweden.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
2014 (English)In: THERMEC 2013, Trans Tech Publications Ltd , 2014, Vol. 783-786, 1182-1187 p.Conference paper, Published paper (Refereed)
Abstract [en]

Nickel base alloys due to their high performances have been widely used in biomass and coal fired power plants. They can undertake plastic deformation with different strain rates such as those typically seen during creep and fatigue at elevated temperatures. In this study, the mechanical behaviors of Alloy 617 with strain rates from 10-2/s down to 10-6/s at temperatures of 650C and 700C have been studied using tensile tests. Furthermore, the microstructures have been investigated using electron backscatter detection and electron channeling contrast imaging. At relatively high strain rate, the alloy shows higher fracture strains at these temperatures. The microstructure investigation shows that it is caused by twinning induced plasticity due to DSA. The fracture strain reaches the highest value at a strain rate of 10-4/s and then it decreases dramatically. At strain rate of 10-6/s, the fracture strain at high temperature is now smaller than that at room temperature, and the strength also decreases with further decreasing strain rate. Dynamic recrystallization can also be observed usually combined with crack initiation and propagation. This is a new type of observation and the mechanisms involved are discussed. © (2014) Trans Tech Publications, Switzerland.

Place, publisher, year, edition, pages
Trans Tech Publications Ltd , 2014. Vol. 783-786, 1182-1187 p.
Series
Materials Science Forum, ISSN 0255-5476
Keyword [en]
Dynamic strain ageing; Elevated temperature; Nickel base super alloy; Twinning
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-116728DOI: 10.4028/www.scientific.net/MSF.783-786.1182Scopus ID: 2-s2.0-84904564494ISBN: 9783038350736 (print)OAI: oai:DiVA.org:liu-116728DiVA: diva2:801365
Conference
8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013
Available from: 2015-04-09 Created: 2015-04-02 Last updated: 2015-04-09

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Calmunger, MattiasChai, GuocaiJohansson, StenMoverare, Johan

Search in DiVA

By author/editor
Calmunger, MattiasChai, GuocaiJohansson, StenMoverare, Johan
By organisation
Engineering MaterialsThe Institute of Technology
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 291 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf