liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties
Uni Research, Bergen, Norway.
Department of Mechanical Engineering and Institute for Computational and Mathematical Engineering Stanford University, USA .
Linköping University, Department of Mathematics, Computational Mathematics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-7972-6183
2015 (English)Book (Refereed)
Abstract [en]

This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties.

Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero.

Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems.Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.

Place, publisher, year, edition, pages
Springer, 2015, 1. , 214 p.
, Mathematical Engineering, ISSN 2192-4732
National Category
Computational Mathematics
URN: urn:nbn:se:liu:diva-117068DOI: 10.1007/978-3-319-10714-1ISBN: 978-3-319-10714-1ISBN: 978-3-319-10713-4OAI: diva2:805341
Available from: 2015-04-15 Created: 2015-04-15 Last updated: 2015-04-23

Open Access in DiVA

No full text

Other links

Publisher's full textfind book at a swedish library/hitta boken i ett svenskt bibliotek

Search in DiVA

By author/editor
Nordström, Jan
By organisation
Computational MathematicsThe Institute of Technology
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 147 hits
ReferencesLink to record
Permanent link

Direct link