liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Phonon Thermal Conductivity of Scandium Nitride for Thermoelectric Applications from First-Principles Calculations
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology. Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, USA.
Department of Mechanical Engineering, National University of Singapore, Block EA, Singapore..
Department of Mechanical Engineering, National University of Singapore, Block EA, Singapore..
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since most technologies either require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity with the effect of microstructure. This is based on ab initio description that includes the temperature dependence of the interatomic force constants, and treats anharmonic lattice vibrations. We choose ScN as a model system, comparing the computational predictions with the experimental data by Time Domain Thermoreflectance (TDTR). Our results show a trend of reduction in lattice thermal conductivity with decreasing grain size, with good agreement between the theoretical model and experimental data. There results suggest a possibility to control thermal conductivity by tailoring the microstructure of ScN. More importantly, we provide a predictive tool for the effect of the microstructure on the lattice thermal conductivity of materials based on first-principles calculations.

Keyword [en]
Thermal conductivity, Scandium nitride, Thermoelectrics, First-principles calculations, Anharmonic approximation
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-117756OAI: oai:DiVA.org:liu-117756DiVA: diva2:810730
Available from: 2015-05-08 Created: 2015-05-08 Last updated: 2015-05-08
In thesis
1. Design of Transition-Metal Nitride Thin Films for Thermoelectrics
Open this publication in new window or tab >>Design of Transition-Metal Nitride Thin Films for Thermoelectrics
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Thermoelectric devices are one of the promising energy harvesting technologies, because of their ability to convert heat (temperature gradient) to electricity by the Seebeck effect. Furthermore, thermoelectric devices can be used for cooling or heating by the inverse effect (Peltier effect). Since this conversion process is clean, with no emission of greenhouse gases during the process, this technology is attractive for recovering waste heat in automobiles or industries into usable electricity. However, the conversion efficiency of such devices is rather low due to fundamental materials limitations manifested through the thermoelectric figure of merit (ZT). Thus, there is high demand on finding materials with high ZT or strategies to improve ZT of materials.

In this thesis, I discuss the basics of thermoelectrics and how to improve ZT of materials, including present-day strategies. Based on these ideas, I propose a new class of materials for thermoelectric applications: transition-metal nitrides, mainly ScN, CrN and their solid solutions. Here, I employed both experimental and theoretical methods to synthesize and study their thermoelectric properties. My study envisages ways for improving the thermoelectric figure of merit of ScN and possible new materials for thermoelectric applications.

The results of my studies show that ScN is a promising thermoelectric material since it exhibits high thermoelectric power factor 2.5x10-3 Wm-1K-2 at 800 K, due to low metallic-like electrical resistivity while retained relatively large Seebeck coefficient. My studies on thermal conductivity of ScN also suggest a possibility to control thermal conductivity by tailoring the microstructure of ScN thin films. Furthermore, my theoretical studies on effects of impurities and stoichiometry on the electronic structure of ScN suggest the possibly to improve ScN ZT by stoichiometry tuning and doping. For CrN and Cr1-xScxN solid solution thin films, the results show that the power factor of CrN (8x10-4 Wm-1K-2 at 770 K) can be retained for the solid solution Cr0.92Sc0.08N. Finally, density functional theory was used to enable a systematic predictionbased strategy for optimizing ScN thermoelectric properties via phase stability of solid solutions. Sc1-xGdxN and Sc1-xLuxN are stabilized as disordered solid solutions, while in the Sc-Nb-N and Sc-Ta-N systems, the inherently layered ternary structures ScNbN2 and ScTaN2 are stable.

Abstract [sv]

Sedan den industriella revolutionen har fossila bränslen varit vår huvudkälla till energi i motorer för transport, elproduktion och uppvärmning av byggnader. Eftersom mänskligheten och vår teknik växer för varje år som går, fortsätter efterfrågan på fossila bränslen att öka. Med tanke på att fossila bränslen inte är förnybara, riskerar vi att de tar slut. Dessutom är resultatet av denna ständiga förbränning av fossila bränslen generering av växthusgaser, t.ex. kolmonoxid och koldioxid, som orsakar klimatförändringar, som ett ytterligare problem. Således finns det ett ökande behov av nya former av energikällor som kan ersätta fossila bränslen.

För närvarande finns det olika typer av tekniker för förnybar energi som solceller, vätgasteknik (bränsleceller), vindkraftverk, vattenkraft, etc. Ett annat koncept som har studerats är energiåtervinning, vilket innebär att fånga eller lagra spillenergi och förvandla det till användbar energi. Spillenergi är den energi, oftast värmeförluster, som förloras i generatorer, vibrationer från motorer, och så vidare. Ungefär 60% av den ursprungliga energin avges som spillvärme. Om vi kan återvinna all denna förlust till användbar energi igen, kan vi spara stora mängder bränslen utsläppen av koldioxid kommer att minska.

Med hänsyn till dessa krav, så är termoelektriska komponenter intressanta kandidater. En termoelektriska komponent är tillverkad av material som direkt återvinner värme (en temperaturgradient) till elektrisk energi utan utsläpp av växthusgaser. De kan också kyla genom den omvända processen, när de genererar en temperaturgradient från en pålagd ström. Detta innebär att de kyler utan rörliga delar eller något kylmedel som kan orsaka miljöproblem. Verkningsgraden är emellertid låg, för närvarande 10% -15%, dessutom är de flesta av dagens termoelektriska material giftiga. Jag har därför studerat en ny klass av material, övergångsmetallnitrider, som en kandidat för termoelektriska tillämpningar. Övergångsmetallnitrider är kända för sina utmärkta mekaniska egenskaper, de används till exempel som beläggningar på skärverktyg i syfte att förbättra prestanda och livslängd. De uppvisar ocksåolika elektriska egenskaper (metaller, halvledare och supraledare). Min studie är inriktad på att förstå de termoelektriska egenskaperna hos övergångsmetallnitrider, främst skandiumnitrid och kromnitrid. Resultaten visar att båda materialen kan vara bra kandidater för termoelektriska tillämpningar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 178 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1667
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-117760 (URN)10.3384/diss.diva-117760 (DOI)978-91-7519-067-9 (print) (ISBN)
Public defence
2015-06-01, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2015-05-08 Created: 2015-05-08 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Kerdsongpanya, SitHellman, OlleLu, JunSimak, Sergei I.Alling, BjörnEklund, Per
By organisation
Thin Film PhysicsThe Institute of TechnologyTheoretical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 362 hits
ReferencesLink to record
Permanent link

Direct link