liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
How to Deactivate Harmful Defects and Active them for New Spin Functionalities in a Semiconductor?
Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6405-9509
Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2015 (English)In: Abstract Book, 2015, FF3.02- p.Conference paper, Abstract (Refereed)
Abstract [en]

We demonstrate a general approach via spin engineering that is capable of not only deactivating defect-mediated efficient non-radiative carrier recombination channels in a semiconductor that are harmful to photonic and photovoltaic device performance, but also adding new room-temperature (RT) spin functionalities that are desirable for future spintronics and spin-photonics but so far unachievable otherwise. This approach exploits the Pauli Exclusion Principle that prohibits occupation of a non-degenerate defect level by two spin-parallel electrons, thereby providing spin blockade of carrier recombination via the defect level. The success of the approach is demonstrated in the dilute nitride of Ga(In)NAs, which holds promises for low-cost, highly efficient lasers for fiber-optic communications as well as for multi-band and multi-junction solar cell applications. First we identify that Gai self-interstitials and their complexes are the most common grown-in defects found in Ga(In)NAs grown by both molecular beam epitaxy (MBE) and metalorganic chemical vapour deposition (MOCVD). They provide a dominant non-radiative shunt path for non-equilibrium carriers, leading to low efficiencies of light-emitting and photon-charge carrier conversion. Spin blockade is shown to lead to a giant enhancement by up to 800% in light emission intensity at RT.Furthermore we show that via spin engineering these seemingly harmful defects can be turned into advantages by adding unconventional defect-enabled spin functionalities that are highly effective at RT, including some of the fundamental building blocks essential for future spintronics. We demonstrate efficient defect-engineered spin filtering in Ga(In)NAs, which is capable of generating a record-high degree (> 40%) of electron spin polarization at RT [Nature Materials 8, 198 (2009), Phys. Rev. B 89, 195412 (2014)]. We also provide the first experimental demonstration of an efficient RT spin amplifier based on defect engineered Ga(In)NAs with a spin gain up to 2700% [Adv. Materials 25, 738 (2013)]. Such a spin amplifier is shown to be capable of amplifying a fast-modulating input spin signal while truthfully maintaining its time variation of the spin-encoded information [7]. By taking advantage of the spin amplification effect, we show that Ga(In)NAs can be employed as efficient RT spin detectors, with spin detection efficiency well exceeding 100% [8,9]. By combining the spin-filtering effect and hyperfine coupling, we further achieve the first realization of RT nuclear spin hyperpolarization in semiconductors via conduction electrons [Nature Communications. 4, 1751 (2013)], relevant to nuclear spin qubits. We believe that such defect-enabled spin functionalities could potentially provide an attractive, alternative solution to the current and important issues on RT spin injection, spin amplification and spin detection in semiconductors for future spintronics.

Place, publisher, year, edition, pages
2015. FF3.02- p.
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-117987OAI: oai:DiVA.org:liu-117987DiVA: diva2:812674
Conference
2015 MRS Spring Meeting, San Francisco, USA
Available from: 2015-05-19 Created: 2015-05-19 Last updated: 2015-05-27

Open Access in DiVA

No full text

Other links

link

Search in DiVA

By author/editor
Chen, WeiminBuyanova, IrinaPuttisong, Yuttapoom
By organisation
Functional Electronic MaterialsFaculty of Science & Engineering
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 82 hits
ReferencesLink to record
Permanent link

Direct link