liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Tuning hardness and fracture resistance of ZrN/Zr0.63Al0.37N nanoscale multilayers by stress-induced transformation toughening
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
University of Saarland, Germany.
University of Politecn Cataluna, Spain; CRnE UPC, Spain.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Show others and affiliations
2015 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 89, 22-31 p.Article in journal (Refereed) Published
Abstract [en]

Structure and mechanical properties of nanoscale multilayers of ZrN/Zr0.63Al0.37N grown by reactive magnetron sputtering on MgO (0 0 1) substrates at a temperature of 700 degrees C are investigated as a function of the Zr0.63Al0.37N layer thickness. The Zr0.63Al0.37N undergoes in situ chemical segregation into ZrN-rich and AlN-rich domains. The AlN-rich domains undergo transition from cubic to wurtzite crystal structure as a function of Zr0.63Al0.37N layer thickness. Such structural transformation allows systematic variation of hardness as well as fracture resistance of the films. A maximum fracture resistance is achieved for 2 nm thick Zr0.63Al0.37N layers where the AlN-rich domains are epitaxially stabilized in the metastable cubic phase. The metastable cubic-AlN phase undergoes stress-induced transformation to wurtzite-AlN when subjected to indentation, which results in the enhanced fracture resistance. A maximum hardness of 34 GPa is obtained for 10 nm thick Zr0.63Al0.37N layers where the wurtzite-AlN and cubic-ZrN rich domains form semi-coherent interfaces.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 89, 22-31 p.
Keyword [en]
Nitride multilayer thin films; Mechanical properties; Fracture toughness
National Category
Physical Sciences
URN: urn:nbn:se:liu:diva-118029DOI: 10.1016/j.actamat.2015.01.066ISI: 000353249100003OAI: diva2:813104

Funding Agencies|European Unions Erasmus-Mundus graduate school in Material Science and Engineering (DocMASE); Swedish Foundation for Strategic Research (SSF) through the grant Designed Multicomponent Coatings (MultiFilms); Swedish Governmental Agency for Innovation Systems (Vinnova) through the VINN Excellence Centre FunMat; VINNMER Grant [2011-03464]; EU [C/4-EFRE-13/2009/Br]; DFG; federal state government of Saarland [INST 256/298-1 FUGG]

Available from: 2015-05-21 Created: 2015-05-20 Last updated: 2016-09-19Bibliographically approved
In thesis
1. Multiscale materials design of hard coatings for improved fracture resistance and thermal stability
Open this publication in new window or tab >>Multiscale materials design of hard coatings for improved fracture resistance and thermal stability
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Physical vapor deposited hard coatings comprised of cubic (c) transition metal (TM)-Al-N, and (TM)-Si-N are the current workhorse materials for a large number of metal cutting and wear resistant applications to fight against the extreme conditions of temperature and stress simultaneously. In spite of a high degree of sophistication in terms of material choice and microstructural design, a lower fracture resistance and limited thermal stability of the coatings remains a technological challenge in the field. The lower fracture resistance of the coating is an inherent material property. Limited thermal stability in the TM-Al-N system is associated with the transformation of metastable c -AlN to its stable wurtzite (w)-AlN phase at a temperature above 900 oC resulting an undesirable hardness drop.

The current work shows how to overcome these challenges by manipulating the coating material at different length scales, i.e. microstructure, crystal and interface structure, and alloy design. The endeavor of multiscale materials design is achieved by converging a deeper material and process knowledge to result specific structural modification over multiple length scales by alloying transition metal nitrides with AlN and SiNx as following.

Microstructure variation is achieved in ZrN coating by alloying it with SiNx, where the surface segregated SiNx breaks down the columnar structure and evolves a selforganized nanocomposite structure with a hardness variation from 37 ±2 GPa to 26 ±1 GPa. The indentation induced fracture studies reveal crack deflection for the columnar coating, likely along the column boundaries. The crack deflection offers additional energy dissipative mechanisms that make the columnar structured coating more fracture resistant, which is not the case for the nanocomposite coating in spite of its lower hardness.

Crystal structure of AlN is varied between stable wurtzite structure to metastable cubic structure in the ZrAlN alloy by adapting a multilayer structure and tuning the layer thickness. The multilayer consisting c-AlN layer shows a hardness of 34 ±1 GPa and a twofold enhancement in the critical force to cause an indentation induced surface crack compared to the multilayer containing w-AlN in spite of a lower hardness for the later case. The higher fracture resistance is discovered to be caused by stress- induced transformation of AlN from its metastable cubic structure to its thermodynamically stable wurtzite structure associated with a molar volume expansion of 20% that builds up local compressive stress zones delaying the onset and propagation of the cracks. This is in fact the first experimental data point for the stress-induced transformation toughening in a hard coating.

The current work also demonstrates a concept of improving the thermal stability of the TM-Al-N by modifying the interface structure between w-AlN and c-TMN. A popular belief in the field is that AlN in its stable wurtzite structure is detrimental to coating hardness, and hence the current material design strategy is to force AlN in metastable cubic phase that confines the application temperature (~ 900 oC). In contrast, here it is shown that the w-AlN offers a high hardness provided if it is grown (semi-)coherent to c-TMN. This is experimentally shown for the multilayer system of TiN/ZrAlN. The interface structure between the c-TiN, c-ZrN and w-AlN is transformed from incoherent to (semi-)coherent structure by tuning the growth conditions under a favorable crystallographic template. Furthermore, the low energy (semi-) coherent interface structure between w-AlN and c- TiN, c- ZrN display a high thermal stability, causing a high and more stable hardness up to an annealing temperature of 1150 oC with a value of 34± 1.5 GPa. This value is 50 % higher compared to the state-of-the-art monolithic and multilayered Ti-Al-N and Zr-Al-N coating containing incoherent w-AlN.

Finally, an entropy based alloy design concept is explored to form a thermodynamically stable solid solution in the TM-Al-N material system that has a positive enthalpy of mixing. Multi-principal element alloys of (AlTiVCrNb)N are formed in a near ideal cubic solid solution. The high configurational entropy in the alloy is predicted to overcome positive enthalpy of mixing, there by an entropy stabilized solid solution formation is expected at a temperature above 1000 K. However, at elevated temperature, optimization between the minimization of interaction energy and maximization of configurational randomness causes precipitation of AlN in its stable wurtzite structure and the cubic solid solution is only confined between TiN, CrN, VN and NbN that have a low enthalpy of mixing.

In summary, this work provides technological solutions to the two outstanding issues in the field. A significant enhancement in fracture resistance of the coating is achieved with appropriate material choice and microstructural design by invoking crack deflection and stress induced transformation toughening mechanisms. A remarkable thermal stability enhancement of the TM-Al-N coating is achieved by a new structural archetype consisting c-TMN and thermodynamically stable w-AlN with a low energy (semi-)coherent interface structure.

Abstract [es]

os recubrimientos duros formados por metales de transición (TM) cúbicos -AlN, y-SiN depositados mediante fase de vapor (CVD) son materiales  extensamente utilizados en gran número de aplicaciones de corte y de desgaste bajo condiciones extremas de temperatura y solicitaciones mecánicas. A pesar de un alto grado de sofisticación en cuanto a la selección del material y el diseño microestructural, la baja resistencia a la fractura y la limitada estabilidad térmica sigue siendo un importante reto tecnológico. La baja resistencia a la fractura es una propiedad inherente del material. La limitada estabilidad térmica en el sistema TM-AlN está asociada con la transformación de la fase AlN metaestable cúbica (c) a la fase estable wurtzita (w) a una temperatura por encima de 900 ºC, que resulta en una caída de dureza indeseable.

En esta tesis doctoral se muestra como la manipulación del material a diferentes escalas puede ayudar a superar estas dificultades, mediante el cambio microestructural, la estructura cristalina y el diseño de materiales mediante la aleación de nitruros de metal con AlN y SiNx.

La variación microestructural en los recubrimientos de ZrN se controla mediante la aleación con SiNx, ya que la segregación superficial de SiNx rompe la estructura columnar y evoluciona a un nanocompuesto autoorganizado con una dureza de entre 37 ±2 GPa y 26 ±1 GPa. Las grietas producidas por indentación muestran la existencia de deflexión de grieta, lo que proporciona un mecanismo de disipación de energía adicional, haciendo de este material más resistente a la generación de grieta.

La estructura cristalina del recubrimiento de AlN se varía entre la fase estable wurtzita y la fase cúbica estable ZrAlN mediante el control de la estructura y el espesor de la arquitectura multicapa. El recubrimiento multicapa formado por la fase c-AlN presenta una dureza de 34 ±1 GPa y una resistencia a la generación de grietas por indentación dos veces mayor comparado con el recubrimiento multicapa formado por w-AlN, aunque éste presente una dureza menor. La mayor resistencia a fractura está causada por la transformación inducida por tensión de AlN desde la fase cúbica metaestable a la fase wurtzita termodinámicamente estable acompañada de una expansión molar del 20%, resultando en una generación de tensiones compresivas que retarda la generación y propagación de grietas. Esta es la primera vez que se reporta la existencia de transformación catalizada por tensión en recubrimientos duros.

En esta tesis también se demuestra el concepto de mejorar la estabilidad térmica de los recubrimientos basados en TM-Al-N mediante la modificación de la estructura interfacial entre las fases w-AlN y c-TMN. En general la existencia de AlN en su fase estable wurtzita puede ser detrimental para la dureza, y por lo tanto se suele depositar el material en la fase cúbica, lo que limita la temperatura de utilización (~ 900 oC). Aquí se muestra que la fase w-AlN puede ofrecer una gran dureza si crece semicoherentemente a una fase c-TMN. Esto se muestra experimetnalmente para el sistema multicapa TiN/ZrAlN. La estructura interfacial entre las fases c-TiN, c-ZrN y w-AlN se transforma desde una estructura (semi-)coherente mediante el control de las condiciones de deposición y crecimiento. Además, la interfaz (semi-) coherente de baja energía entre c-TiN, c-ZrN y w-AlN resulta en una alta estabilidad térmica con una dureza mayor de 34± 1.5 GPa y más estable hasta temperaturas de recocido de 1150ºC. Esta dureza es un 50%mayor de la dureza reportada para recubrimientos monolíticos y multicapas de Ti-Al-N y Zr-Al-N que contengan fase incoherente de w-AlN.

Finalmente, el concepto de aleaciones de alta entropía se utiliza para depositar una solución sólida termodinámicamente estable del sistema TM-Al-N que presenta una entalpía de mezcla positiva. Elementos de aleación multi-principales de (AlTiVCrNb)N se utilizan para formar una solución sólida cúbica . La alta entropía configuracional en la mezcla es mayor que la entalpía, por lo que se espera una formación de solución sólida estabilizada a temperaturas mayores de 1000K. Sin embargo, a temperaturas elevadas, la optimización entre la minimización de la energía de interacción y la maximización del desorden configuracional causa la precipitación de AlN en su estructura wurtzita estable, y la solución sólida cúbica está únicamente confinada entre TiN, CrN , VN y NbN que tienen baja entalpía de mezcla.

En resumen, esta tesis presenta soluciones tecnológica a dos retos importantes en el campo. Se consigue una mejora significativa en la resistencia a fractura en los recubrimientos mediante la selección de materiales y el diseño microestructural mediante mecanismos de deflexión de grieta y transformación de fase asistida por tensión. Así mismo, se aumenta la estabilidad térmica de recubrimientos TM-Al-N mediante una nueva microestructura consistente en c-TMN y w-AlN termodinámicamente estable con una estructura interfacial (semi-)coherente de baja energía.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 75 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1759
National Category
Nano Technology Physical Sciences
urn:nbn:se:liu:diva-131418 (URN)9789176857793 (Print) (ISBN)
Public defence
2016-11-09, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)

Part of

the Joint European Doctoral Programme in Materials Science and Engineering (DocMase)

in collaboration with

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.

Available from: 2016-09-19 Created: 2016-09-19 Last updated: 2016-09-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kumar Yalamanchili, PhaniRogström, LinaOdén, MagnusGhafoor, Naureen
By organisation
Nanostructured MaterialsFaculty of Science & EngineeringThe Institute of Technology
In the same journal
Acta Materialia
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 89 hits
ReferencesLink to record
Permanent link

Direct link