liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Charge transport and trapping in Cs-doped poly(dialkoxy-p-phenylene vinylene) light-emitting diodes
Eindhoven University of Technology, The Netherlands.
Linköping University, Department of Physics, Chemistry and Biology, Chemical and Optical Sensor Systems. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-7104-7127
Eindhoven University of Technology, The Netherlands.
Eindhoven University of Technology, The Netherlands.
2004 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 69, no 15, 155216Article in journal (Refereed) Published
Abstract [en]

Al/Cs/MDMO-PPV/ITO (where MDMO-PPV stands for poly[2-methoxy-5-(3()-7()-dimethyloctyloxy)-1,4phenylene vinylene] and ITO is indium tin oxide) light-emitting diode (LED) structures, made by physical vapor deposition of Cs on the emissive polymer layer, have been characterized by electroluminescence, current-voltage, and admittance spectroscopy. Deposition of Cs is found to improve the balance between electron and hole currents, enhancing the external electroluminescence efficiency from 0.01 cd A(-1) for the bare Al cathode to a maximum of 1.3 cd A(-1) for a Cs coverage of only 1.5x10(14) atoms/cm(2). By combining I-V and admittance spectra with model calculations, in which Cs diffusion profiles are explicitly taken into account, this effect could be attributed to a potential drop at the cathode interface due to a Cs-induced electron donor level 0.61 eV below the lowest unoccupied molecular orbital. In addition, the admittance spectra in the hole-dominated regime are shown to result from space-charge-limited conduction combined with charge relaxation in trap levels. This description allows us to directly determine the carrier mobility, even in the presence of traps. In contrast to recent literature, we demonstrate that there is no need to include dispersive transport in the description of the carrier mobility to explain the excess capacitance that is typically observed in admittance spectra of pi-conjugated materials.

Place, publisher, year, edition, pages
American Physical Society , 2004. Vol. 69, no 15, 155216
National Category
Physical Sciences
URN: urn:nbn:se:liu:diva-118212DOI: 10.1103/PhysRevB.69.155216ISI: 000221426800069OAI: diva2:813342
Available from: 2015-05-22 Created: 2015-05-22 Last updated: 2015-06-01

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kemerink, Martijn
By organisation
Chemical and Optical Sensor SystemsThe Institute of Technology
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 37 hits
ReferencesLink to record
Permanent link

Direct link