liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Carrier Recombination in Polymer Fullerene Solar Cells Probed by Reversible Exchange of Charge between the Active Layer and Electrodes Induced by a Linearly Varying Voltage
Eindhoven University of Technology, Netherlands.
Eindhoven University of Technology, Netherlands.
Eindhoven University of Technology, Netherlands.
Eindhoven University of Technology, Netherlands.
Show others and affiliations
2013 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 7, 3210-3220 p.Article in journal (Refereed) Published
Abstract [en]

The use of a voltage pulse that varies linearly with time and that is symmetric in time around t = 0 allows for simultaneous determination of (photo)capacitance and (photo)conductance of polymer solar cells. From the measured capacitance, an average density of reversibly extractable carriers is determined, and the result is compared to numerical drift-diffusion simulations. Results are in agreement with large charge densities near the contacts that can be exchanged with the electrode in a thermodynamically reversible manner upon changing the voltage. The combined determination of capacitance and conductance yields a relaxation time tau(rel) for photogenerated charge carriers. Results on thermally annealed poly(3-hexylthiopene):fullerene bulk heterojunction solar cells indicate tau(rel) similar to 2 mu s, limited by extraction and not significantly affected by bimolecular recombination under intensities up to 1 sun. In contrast, for small bandgap poly(diketopyrrolopyrrole-alt-quinquethiophene)-fullerene solar cells with similar to 5% power conversion efficiency, tau(rel) is limited by bimolecular recombination. This illustrates the need for very fast charge transport rates to avoid losses due to bimolecular recombination in solar cells with high charge generation rates. Conclusions from the charge exchange experiments are confirmed by time domain measurements using pulsed illumination.

Place, publisher, year, edition, pages
American Chemical Society , 2013. Vol. 117, no 7, 3210-3220 p.
National Category
Physical Sciences
URN: urn:nbn:se:liu:diva-118133DOI: 10.1021/jp306794jISI: 000315432100002OAI: diva2:813755

Funding Agencies|Dutch Polymer Institute (DPI) [631]; NanoNextNL

Available from: 2015-05-25 Created: 2015-05-22 Last updated: 2015-06-04

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kemerink, Martijn
By organisation
Chemical and Optical Sensor SystemsThe Institute of Technology
In the same journal
The Journal of Physical Chemistry C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 43 hits
ReferencesLink to record
Permanent link

Direct link