liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highly reflective coatings for interior and exterior steel cladding and the energy efficiency of buildings
Högskolan Dalarna, Energi och miljöteknik.
Högskolan Dalarna, Energi och miljöteknik.
Högskolan Dalarna, Energi och miljöteknik.
Högskolan Dalarna, Energi och miljöteknik.
2011 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 88, no 12, 4655-4666 p.Article in journal (Refereed) Published
Abstract [en]

The effect of surface heat-radiation properties of coil-coated steel cladding material on the energy efficiency of buildings in Nordic climate is addressed by parallel temperature and energy usage measurements in a series of test cabins with different exterior solar reflectivity and interior thermal reflectivity. During one year, a number of one- or two-week experiments with air conditioner cooling and electrical floor heating were made while logging air-, radiation- and surface temperatures, energy consumption and weather conditions. Measurements show significant energy savings in the test cabins by the use of high thermal reflectivity interior surfaces both during heating and cooling and a strongly reduced cooling demand by the use of high solar reflectivity exterior surfaces. Results are interpreted within the context of a steady-state energy flux model, to illuminate the importance of surface resistance properties (radiation and convective heat dissipation).

Place, publisher, year, edition, pages
Elsevier, 2011. Vol. 88, no 12, 4655-4666 p.
Keyword [en]
Total solar reflectivity, Reflective coating, Thermal emissivity, Building interior heat flux, Energy efficient buildings Energy saving
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:liu:diva-118285DOI: 10.1016/j.apenergy.2011.06.002ISI: 000295387200041OAI: oai:DiVA.org:liu-118285DiVA: diva2:813950
Available from: 2011-09-01 Created: 2015-05-25 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Radiation properties of coil-coated steel in building envelope surfaces and the influence on building thermal performance
Open this publication in new window or tab >>Radiation properties of coil-coated steel in building envelope surfaces and the influence on building thermal performance
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment.

The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods.

The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations.

The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer.

The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building.

Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 94 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1677
National Category
Energy Systems Building Technologies
Identifiers
urn:nbn:se:liu:diva-118291 (URN)10.3384/diss.diva-118291 (DOI)978-91-7519-047-1 (ISBN)
Public defence
2015-06-12, A35, Hus A, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2015-05-25 Created: 2015-05-25 Last updated: 2015-05-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Joudi, Ali

Search in DiVA

By author/editor
Joudi, Ali
In the same journal
Applied Energy
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 97 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf