liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Energy efficient surfaces on building sandwich panels - A dynamic simulation model
Energy and Environmental Technology, Dalarna University, Falun, Sweden.
SSAB EMEA, SE-78184 Borlänge, Sweden.
Energy and Environmental Technology, Dalarna University, Falun, Sweden.
2011 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 43, no 9, 2462-2467 p.Article in journal (Refereed) Published
Abstract [en]

The choice of building envelope is critical for the energy performance of buildings. The major part of the energy used by a building during its lifetime is used for maintaining a suitable interior thermal climate under varying exterior conditions. Although exterior heat radiation properties (i.e. total solar reflectivity and long wave thermal emissivity) have been well accepted to have a large impact on the need for active cooling in warmer climate, the effect of a reduced thermal emissivity on interior surfaces on the building thermal energy flux is rarely studied. This paper addresses the sensitivity of the thermal energy flux through a sandwich panel, by systematically varying the surface thermal emissivity (both interior and exterior) and total solar reflectance of exterior surface, for three geographical locations: southern, middle and northern Europe. A model is introduced for calculating the effect of both interior and exterior optical properties of a horizontal roof panel in terms of net energy flux per unit area. The results indicate potential energy saving by the smart choice of optical properties of interior and exterior surfaces.

Place, publisher, year, edition, pages
2011. Vol. 43, no 9, 2462-2467 p.
Keyword [en]
Total solar reflectivity, Reflective coating, Thermal emissivity, Building heat flux, Energy efficiency
National Category
Energy Systems
URN: urn:nbn:se:liu:diva-118286DOI: 10.1016/j.enbuild.2011.05.026ISI: 000294834900048OAI: diva2:813953
Available from: 2011-09-01 Created: 2015-05-25 Last updated: 2015-05-25Bibliographically approved
In thesis
1. Radiation properties of coil-coated steel in building envelope surfaces and the influence on building thermal performance
Open this publication in new window or tab >>Radiation properties of coil-coated steel in building envelope surfaces and the influence on building thermal performance
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment.

The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods.

The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations.

The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer.

The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building.

Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 94 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1677
National Category
Energy Systems Building Technologies
urn:nbn:se:liu:diva-118291 (URN)10.3384/diss.diva-118291 (DOI)978-91-7519-047-1 (print) (ISBN)
Public defence
2015-06-12, A35, Hus A, Campus Valla, Linköping, 10:15 (English)
Available from: 2015-05-25 Created: 2015-05-25 Last updated: 2015-05-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Joudi, Ali
In the same journal
Energy and Buildings
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 47 hits
ReferencesLink to record
Permanent link

Direct link