liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films
Chalmers, Sweden.ORCID iD: 0000-0002-3002-3639
Chalmers, Sweden.
Lund University, Sweden.
Chalmers, Sweden.
2008 (English)In: BIOINTERPHASES, ISSN 1934-8630, Vol. 3, no 3, FD30-FD40 p.Article, review/survey (Refereed) Published
Abstract [en]

The resonance conditions for excitation of propagating surface plasmons at planar metal/dielectric interfaces and localized surface plasmons associated with metal nanostructures are both sensitive to changes in the interfacial refractive index. This has made these phenomena increasingly popular as transducer principles in label-free sensing of biomolecular recognition reactions. In this article, the authors review the recent progress in the field of nanoplasmonic bioanalytical sensing in general, but set particular focus on certain unique possibilities provided by short-range ordered nanoholes in thin metal films. Although the latter structures are formed in continuous metal films, while nanoparticles are discrete entities, these two systems display striking similarities with respect to sensing capabilities, including bulk sensitivities, and the localization of the electromagnetic fields. In contrast, periodic arrays of nanoholes formed in metal films, most known for their ability to provide wavelength-tuned enhanced transmission, show more similarities with conventional propagating surface plasmon resonance. However, common for both short-range ordered and periodic nanoholes formed in metal films is that the substrate is electrically conductive. Some of the possibilities that emerge from sensor templates that are both electrically conductive and plasmon active are discussed and illustrated using recent results on synchronized nanoplasmonic and quartz crystal microbalance with dissipation monitoring of supported lipid bilayer formation and subsequent biomolecular recognition reactions. Besides the fact that this combination of techniques provides an independent measure of biomolecular structural changes, it is also shown to contribute with a general means to quantify the response from nanoplasmonic sensors in terms of bound molecular mass. c 2008 American Vacuum Society. [DOI: 10.1116/1.3027483]

Place, publisher, year, edition, pages
American Vacuum Society / SpringerOpen / Springer Verlag (Germany) / AVS: Science and Technology of Materials, Interfaces and Processing , 2008. Vol. 3, no 3, FD30-FD40 p.
National Category
Condensed Matter Physics
URN: urn:nbn:se:liu:diva-118832DOI: 10.1116/1.3027483ISI: 000264979200012PubMedID: 20408698OAI: diva2:817125

Funding Agencies|Swedish Research Council; Biomimetic; SSF; Vinnova

Available from: 2015-06-04 Created: 2015-06-04 Last updated: 2015-06-18

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jonsson, Magnus P.
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 49 hits
ReferencesLink to record
Permanent link

Direct link