liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass
Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..ORCID iD: 0000-0002-3002-3639
Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
Division of Solid State Physics, Department of Physics, Lund University, Lund, Sweden..
2008 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 80, no 21, 7988-7995 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents a study of supported lipid bilayer (SIB) formation and subsequent protein binding using a sensor that combines localized surface plasmon resonance (LSPR) and quartz crystal microbalance with dissipation (QCM-D) monitoring. The LSPR activity arises from silicon oxide (SiOx) coated nanometric apertures in a thin gold film, which also serves as the active electrode of a QCM-D crystal. Both transducer principles provide signatures for the formation of a SLB upon adsorption and subsequent rupture of adsorbed lipid vesicles. However, the two techniques are sensitive over different regions of the sample: LSPR primarily inside and on the rim of the holes and QCM-D primarily on the planar areas between the holes. Although the dimension of the lipid vesicles is on the same order as the dimension of the nanoholes, it is concluded from the response of the combined system that vesicle rupture in the nanoholes and on the planar region between the holes is synchronized. Furthermore, by determining the thickness of the SLB from the QCM-D response, the characteristic decay length of the LSPR field intensity could be determined. This made it possible not only to determine the mass and refractive index of the homogeneous SLB but also to postulate a generic means to quantify the LSPR response in terms of mass-uptake also for nonhomogeneous films. This is exemplified by measuring the adsorbed lipid mass during vesicle adsorption, yielding the critical lipid vesicle coverage at which spontaneous rupture into a planar bilayer occurs. The generic applicability and versatility of the method is demonstrated from specific protein binding to a functionalized SLB. From the absolute refractive index of the protein, provided from the LSPR data alone, it was possible to determine both the effective thickness of the protein film and the molecular mass (or number) of bound protein.

Place, publisher, year, edition, pages
American Chemical Society , 2008. Vol. 80, no 21, 7988-7995 p.
National Category
Biophysics
Identifiers
URN: urn:nbn:se:liu:diva-118830DOI: 10.1021/ac8008753ISI: 000260567000016PubMedID: 18834149OAI: oai:DiVA.org:liu-118830DiVA: diva2:817132
Note

Funding Agencies|Swedish Research Council for Engineering Sciences [2005-3140]; Strategic Research Foundation

Available from: 2015-06-04 Created: 2015-06-04 Last updated: 2015-06-18

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jonsson, Magnus P.
In the same journal
Analytical Chemistry
Biophysics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 64 hits
ReferencesLink to record
Permanent link

Direct link