liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Photoresistance Switching of Plasmonic Nanopores
IMEC, Belgium; Katholieke University of Leuven, Belgium.
Delft University of Technology, Netherlands.
IMEC, Belgium; Katholieke University of Leuven, Belgium.
IMEC, Belgium; Katholieke University of Leuven, Belgium.
Show others and affiliations
2015 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, no 1, 776-782 p.Article in journal (Refereed) Published
Abstract [en]

Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (similar to 12 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification.

Place, publisher, year, edition, pages
American Chemical Society , 2015. Vol. 15, no 1, 776-782 p.
Keyword [en]
plasmonic nanopores; photoresistance; switching; optofluidic nanovalve; nanobubble
National Category
Atom and Molecular Physics and Optics
URN: urn:nbn:se:liu:diva-118816DOI: 10.1021/nl504516dISI: 000348086100121PubMedID: 25514824OAI: diva2:817158

Funding Agencies|KU Leuven [JuMo/13/025]; FWO (Flanders); Wenner-Gren Foundations; National Human Genome Research Institute of the National Institute of Health [1R01HG007406-01]; ERC [247072]; Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program

Available from: 2015-06-04 Created: 2015-06-04 Last updated: 2015-06-18

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jonsson, Magnus P.
In the same journal
Nano letters (Print)
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 220 hits
ReferencesLink to record
Permanent link

Direct link