liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sensor Validation Using Linear Parametric Models, Artificial Neural Networks and CUSUM
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Sensorvalidering medelst linjära konfektionsmodeller, artificiella neurala nätverk och CUSUM (Swedish)
Abstract [en]

Siemens gas turbines are monitored and controlled by a large number of sensors and actuators. Process information is stored in a database and used for offline calculations and analyses. Before storing the sensor readings, a compression algorithm checks the signal and skips the values that explain no significant change. Compression of 90 % is not unusual. Since data from the database is used for analyses and decisions are made upon results from these analyses it is important to have a system for validating the data in the database. Decisions made on false information can result in large economic losses. When this project was initiated no sensor validation system was available. In this thesis the uncertainties in measurement chains are revealed. Methods for fault detection are investigated and finally the most promising methods are put to the test. Linear relationships between redundant sensors are derived and the residuals form an influence structure allowing the faulty sensor to be isolated. Where redundant sensors are not available, a gas turbine model is utilized to state the input-output relationships so that estimates of the sensor outputs can be formed. Linear parametric models and an ANN (Artificial Neural Network) are developed to produce the estimates. Two techniques for the linear parametric models are evaluated; prediction and simulation. The residuals are also evaluated in two ways; direct evaluation against a threshold and evaluation with the CUSUM (CUmulative SUM) algorithm. The results show that sensor validation using compressed data is feasible. Faults as small as 1% of the measuring range can be detected in many cases.

Place, publisher, year, edition, pages
2015. , 66 p.
Keyword [en]
Sensor Validation, Linear Parametric Models, Artificial Neural Networks, ANN, Fault Detection, CUSUM
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-119004ISRN: LiTH-ISY-EX--15/4859--SEOAI: oai:DiVA.org:liu-119004DiVA: diva2:817860
Subject / course
Automatic Control
Presentation
2015-06-05, Nollstället, Linköping, 14:15 (English)
Supervisors
Examiners
Available from: 2015-06-09 Created: 2015-06-07 Last updated: 2015-06-09Bibliographically approved

Open Access in DiVA

fulltext(1963 kB)190 downloads
File information
File name FULLTEXT01.pdfFile size 1963 kBChecksum SHA-512
78c6dad7dff55a3f00afbe41ff4e18882112aeb7ae2907ee11fd30ea21bf27797f932a961fd3c25fb2e65f34460e6b611c2c5e90d09efa4ef541244b8192ec0f
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Norman, Gustaf
By organisation
Automatic ControlFaculty of Science & Engineering
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 190 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 441 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf