liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detecting Rails and Obstacles Using a Train-Mounted Thermal Camera
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.ORCID iD: 0000-0002-6591-9400
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Termisk Systemteknik AB, Linköping, Sweden.ORCID iD: 0000-0002-6763-5487
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6096-3648
2015 (English)In: Image Analysis: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings / [ed] Rasmus R. Paulsen; Kim S. Pedersen, Springer, 2015, 492-503 p.Conference paper, Published paper (Refereed)
Abstract [en]

We propose a method for detecting obstacles on the railway in front of a moving train using a monocular thermal camera. The problem is motivated by the large number of collisions between trains and various obstacles, resulting in reduced safety and high costs. The proposed method includes a novel way of detecting the rails in the imagery, as well as a way to detect anomalies on the railway. While the problem at a first glance looks similar to road and lane detection, which in the past has been a popular research topic, a closer look reveals that the problem at hand is previously unaddressed. As a consequence, relevant datasets are missing as well, and thus our contribution is two-fold: We propose an approach to the novel problem of obstacle detection on railways and we describe the acquisition of a novel data set.

Place, publisher, year, edition, pages
Springer, 2015. 492-503 p.
Series
Lecture Notes in Computer Science, ISSN 0302-9743 (print), 1611-3349 (online) ; 9127
Keyword [en]
Thermal imaging; Computer vision; Train safety; Railway detection; Anomaly detection; Obstacle detection
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:liu:diva-119507DOI: 10.1007/978-3-319-19665-7_42ISBN: 978-3-319-19664-0 (print)ISBN: 978-3-319-19665-7 (print)OAI: oai:DiVA.org:liu-119507DiVA: diva2:824491
Conference
19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015
Available from: 2015-06-22 Created: 2015-06-18 Last updated: 2016-06-09Bibliographically approved
In thesis
1. Detection and Tracking in Thermal Infrared Imagery
Open this publication in new window or tab >>Detection and Tracking in Thermal Infrared Imagery
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Thermal cameras have historically been of interest mainly for military applications. Increasing image quality and resolution combined with decreasing price and size during recent years have, however, opened up new application areas. They are now widely used for civilian applications, e.g., within industry, to search for missing persons, in automotive safety, as well as for medical applications. Thermal cameras are useful as soon as it is possible to measure a temperature difference. Compared to cameras operating in the visual spectrum, they are advantageous due to their ability to see in total darkness, robustness to illumination variations, and less intrusion on privacy.

This thesis addresses the problem of detection and tracking in thermal infrared imagery. Visual detection and tracking of objects in video are research areas that have been and currently are subject to extensive research. Indications oftheir popularity are recent benchmarks such as the annual Visual Object Tracking (VOT) challenges, the Object Tracking Benchmarks, the series of workshops on Performance Evaluation of Tracking and Surveillance (PETS), and the workshops on Change Detection. Benchmark results indicate that detection and tracking are still challenging problems.

A common belief is that detection and tracking in thermal infrared imagery is identical to detection and tracking in grayscale visual imagery. This thesis argues that the preceding allegation is not true. The characteristics of thermal infrared radiation and imagery pose certain challenges to image analysis algorithms. The thesis describes these characteristics and challenges as well as presents evaluation results confirming the hypothesis.

Detection and tracking are often treated as two separate problems. However, some tracking methods, e.g. template-based tracking methods, base their tracking on repeated specific detections. They learn a model of the object that is adaptively updated. That is, detection and tracking are performed jointly. The thesis includes a template-based tracking method designed specifically for thermal infrared imagery, describes a thermal infrared dataset for evaluation of template-based tracking methods, and provides an overview of the first challenge on short-term,single-object tracking in thermal infrared video. Finally, two applications employing detection and tracking methods are presented.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 66 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1744
Keyword
thermal, infrared, detection, tracking
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
urn:nbn:se:liu:diva-126955 (URN)10.3384/lic.diva-126955 (DOI)978-91-7685-789-2 (ISBN)
Presentation
2016-05-10, Visionen, Hus B, Campus Valla, Linköpings universitet, Linköping, 16:16 (English)
Opponent
Supervisors
Funder
Swedish Research Council, D0570301EU, FP7, Seventh Framework Programme, 312784EU, FP7, Seventh Framework Programme, 607567
Available from: 2016-04-11 Created: 2016-04-08 Last updated: 2017-02-13Bibliographically approved

Open Access in DiVA

fulltext(2283 kB)86 downloads
File information
File name FULLTEXT01.pdfFile size 2283 kBChecksum SHA-512
46e9e637551121a0b076bc9b8e7f75c93cdaf6d60992967289568099fe9d3247d633e736bab7282bc5c20aba5287c0b7b1e3603d9638178d38ea8cb7ecce06fc
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Berg, AmandaÖfjäll, KristofferAhlberg, JörgenFelsberg, Michael

Search in DiVA

By author/editor
Berg, AmandaÖfjäll, KristofferAhlberg, JörgenFelsberg, Michael
By organisation
Computer VisionFaculty of Science & Engineering
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 86 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 705 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf