liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Rayleigh light scattering properties of atmospheric molecular clusters consisting of sulfuric acid and bases
University of Copenhagen, Denmark.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, Faculty of Science & Engineering.
University of Copenhagen, Denmark.
2015 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 17, no 24, 15701-15709 p.Article in journal (Refereed) Published
Abstract [en]

The Rayleigh light scattering properties of (H2SO4)(a)(NH3)(b) and (H2SO4)(a)((CH3)(2)NH)(b) atmospheric molecular clusters have been investigated using a response theory approach. Using density functional theory the molecular structures and stepwise formation free energies of clusters with a and b up to 4 have been re-investigated. The Rayleigh scattering intensities are calculated from the dipole polarizability tensor a using the CAM-B3LYP functional by applying linear response methods. The intrinsic scattering properties of (H2SO4)(a)(NH3)(b) and (H2SO4)(a)((CH3)(2)NH)(b) indicate that amine containing clusters scatter light significantly more efficiently then their ammonia containing counterparts. Using the Atmospheric Cluster Dynamics Code (ACDC) the steady state cluster concentrations are estimated and the effective scattering is calculated. The effective scattering is shown to be highly dependent on the estimated concentrations and indicates that there exist competitive pathways, such as nucleation and coagulation, which influence the cluster distributions. The frequency dependence of the scattering is found to depend on the cluster composition and show increased responses when clusters contain more bases than acid molecules. Based on structures obtained using semi-empirical molecular dynamics simulations the Rayleigh scattering properties of clusters with up to 20 acid-base pairs are evaluated. This study represents the first step towards gaining a fundamental understanding of the scattering properties of small atmospheric clusters in the ambient atmosphere.

Place, publisher, year, edition, pages
Royal Society of Chemistry , 2015. Vol. 17, no 24, 15701-15709 p.
National Category
Theoretical Chemistry
URN: urn:nbn:se:liu:diva-120181DOI: 10.1039/c5cp01012hISI: 000356056000024PubMedID: 25811805OAI: diva2:841377
Available from: 2015-07-13 Created: 2015-07-13 Last updated: 2015-07-13

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Norman, Patrick
By organisation
Theoretical ChemistryFaculty of Science & Engineering
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 190 hits
ReferencesLink to record
Permanent link

Direct link