liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Theoretical prediction and synthesis of CSxFy thin films
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2016 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 120, no 17, 9527-9534 p.Article in journal (Refereed) Published
Abstract [en]

A new carbon-based compound: CSxFy was addressed by density functional theory calculations and synthesized by reactive magnetron sputtering. Geometry optimizations and energy calculations were performed on graphene-like model systems containing sulfur and fluorine atoms. It is shown that [S+F] concentrations in the range of 0−10 at.%, structural ordered characteristics similar to graphene pieces containing ring defects are energetically feasible. The modeling predicts that CSxFy thin films with graphite and fullerene-like characteristics may be obtained for the mentioned concentration range. Accordingly, thin films were synthesized from a graphite solid target and sulfur hexafluoride as reactive gas. In agreement with the theoretical prediction, transmission electron microscopy characterization and selected area electron diffraction confirmed the presence of small ordered clusters with graphitic features in a sample containing 0.4 at.% of S and 3.4 at.% of F.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 120, no 17, 9527-9534 p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-121470DOI: 10.1021/acs.jpcc.6b02718ISI: 000375631100060OAI: oai:DiVA.org:liu-121470DiVA: diva2:855443
Note

funding agencies: Swedish Foundation for Strategic Research (SSF) [RMA11-0029]; Carl Trygger Foundation for Scientific Research; Swedish Research Council [642-2013-8020]; ERC [258509]; Knut and Alice Wallenberg Foundation; Swedish Government Strategic Research Area in Materials at Linkoping University 

Vid tiden för disputation förelåg publikationen som manuskript

Available from: 2015-09-21 Created: 2015-09-21 Last updated: 2016-08-31Bibliographically approved
In thesis
1. Nanostructured carbon-based thin films: prediction and design
Open this publication in new window or tab >>Nanostructured carbon-based thin films: prediction and design
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Carbon-based thin films are a vast group of materials of great technological importance. Thanks to the different bonding options for carbon, a large variety of structures (from amorphous to nanostructured) can be achieved in the process of film synthesis. The structural diversity increases even more if carbon is combined with relatively small quantities of atoms of other elements. This results in a set of materials with many different interesting properties for a wide range of technological applications.

This doctoral thesis is about nanostructured carbon-based thin films. In particular, the focus is set on theoretical modeling, prediction of structural features and design of sulfo carbide (CSx) and carbon fluoride (CFx) thin films.

The theoretical approach follows the synthetic growth concept (SGC) which is based on the density functional theory. The SGC departure point is the fact that the nanostructured films of interest can be modeled as assemblies of low dimensional units (e.g., finite graphene-like model systems), similarly to modeling graphite as stacks of graphene sheets. Moreover, the SGC includes a description of the groups of atoms that act as building blocks (i.e., precursors) during film deposition, as well as their interaction with the growing film.

This thesis consists of two main parts:

Prediction: In this work, I show that nanostructured CSx thin films can be expected for sulfur contents up to 20 atomic % with structural characteristics that go from graphite-like to fullerene-like (FL). In the case of CFx thin films, a diversity of structures are predicted depending on the fluorine concentration. Short range ordered structures, such as FL structure, can be expected for low concentrations (up to 5 atomic %). For increasing fluorine concentration, diamond-like and polymeric structures should predominate. As a special case, I also studied the ternary system CSxFy. The calculations show that CSxFy thin films with nanostructured features should be possible to synthesize at low sulfur and fluorine concentrations and the structural characteristics can be described and explained in terms of the binaries CSx and CFx.

Design: The carbon-based thin films predicted in this thesis were synthesized by magnetron sputtering. The results from my calculations regarding structure and composition, and analysis of precursors (availability and role during deposition process) were successfully combined with the experimental techniques in the quest of obtaining films with desired structural features and understanding their properties.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 79 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1696
Keyword
carbon, carbon-based, thin films, fullerene-like, modeling, dft
National Category
Condensed Matter Physics Nano Technology
Identifiers
urn:nbn:se:liu:diva-121021 (URN)10.3384/diss.diva-121021 (DOI)978-91-7685-976-6 (print) (ISBN)
Public defence
2015-10-16, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2015-09-04 Created: 2015-09-02 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Goyenola, CeciliaLai, Chung-ChuanNäslund, Lars-ÅkeLu, JunHögberg, HansHultman, LarsRosén, JohannaGueorguiev, Gueorgui Kostov
By organisation
Thin Film PhysicsFaculty of Science & Engineering
In the same journal
The Journal of Physical Chemistry C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 98 hits
ReferencesLink to record
Permanent link

Direct link