liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Online learning of autonomous driving using channel representations of multi-modal joint distributions
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6096-3648
2015 (English)In: Proceedings of SSBA, Swedish Symposium on Image Analysis, 2015, Swedish Society for automated image analysis , 2015Conference paper, Published paper (Other academic)
Place, publisher, year, edition, pages
Swedish Society for automated image analysis , 2015.
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-121572OAI: oai:DiVA.org:liu-121572DiVA: diva2:856870
Conference
Swedish Symposium on Image Analysis (SSBA), Ystad, Sweden, 17-18 March 2015
Available from: 2015-09-25 Created: 2015-09-25 Last updated: 2016-05-04Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Öfjäll, KristofferFelsberg, Michael
By organisation
Computer VisionFaculty of Science & Engineering
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar

Total: 408 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf