liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Learning Spatially Regularized Correlation Filters for Visual Tracking
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6096-3648
2015 (English)In: Proceedings of the International Conference in Computer Vision (ICCV), 2015, IEEE Computer Society, 2015, p. 4310-4318Conference paper, Published paper (Refereed)
Abstract [en]

Robust and accurate visual tracking is one of the most challenging computer vision problems. Due to the inherent lack of training data, a robust approach for constructing a target appearance model is crucial. Recently, discriminatively learned correlation filters (DCF) have been successfully applied to address this problem for tracking. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier on all patches in the target neighborhood. However, the periodic assumption also introduces unwanted boundary effects, which severely degrade the quality of the tracking model.

We propose Spatially Regularized Discriminative Correlation Filters (SRDCF) for tracking. A spatial regularization component is introduced in the learning to penalize correlation filter coefficients depending on their spatial location. Our SRDCF formulation allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples. We further propose an optimization strategy, based on the iterative Gauss-Seidel method, for efficient online learning of our SRDCF. Experiments are performed on four benchmark datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014. Our approach achieves state-of-the-art results on all four datasets. On OTB-2013 and OTB-2015, we obtain an absolute gain of 8.0% and 8.2% respectively, in mean overlap precision, compared to the best existing trackers.

Place, publisher, year, edition, pages
IEEE Computer Society, 2015. p. 4310-4318
Series
IEEE International Conference on Computer Vision. Proceedings, ISSN 1550-5499
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-121609DOI: 10.1109/ICCV.2015.490ISI: 000380414100482ISBN: 978-1-4673-8390-5 (print)OAI: oai:DiVA.org:liu-121609DiVA, id: diva2:857265
Conference
International Conference in Computer Vision (ICCV), Santiago, Chile, December 13-16, 2015
Available from: 2015-09-28 Created: 2015-09-28 Last updated: 2018-04-25
In thesis
1. Learning Convolution Operators for Visual Tracking
Open this publication in new window or tab >>Learning Convolution Operators for Visual Tracking
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Visual tracking is one of the fundamental problems in computer vision. Its numerous applications include robotics, autonomous driving, augmented reality and 3D reconstruction. In essence, visual tracking can be described as the problem of estimating the trajectory of a target in a sequence of images. The target can be any image region or object of interest. While humans excel at this task, requiring little effort to perform accurate and robust visual tracking, it has proven difficult to automate. It has therefore remained one of the most active research topics in computer vision.

In its most general form, no prior knowledge about the object of interest or environment is given, except for the initial target location. This general form of tracking is known as generic visual tracking. The unconstrained nature of this problem makes it particularly difficult, yet applicable to a wider range of scenarios. As no prior knowledge is given, the tracker must learn an appearance model of the target on-the-fly. Cast as a machine learning problem, it imposes several major challenges which are addressed in this thesis.

The main purpose of this thesis is the study and advancement of the, so called, Discriminative Correlation Filter (DCF) framework, as it has shown to be particularly suitable for the tracking application. By utilizing properties of the Fourier transform, a correlation filter is discriminatively learned by efficiently minimizing a least-squares objective. The resulting filter is then applied to a new image in order to estimate the target location.

This thesis contributes to the advancement of the DCF methodology in several aspects. The main contribution regards the learning of the appearance model: First, the problem of updating the appearance model with new training samples is covered. Efficient update rules and numerical solvers are investigated for this task. Second, the periodic assumption induced by the circular convolution in DCF is countered by proposing a spatial regularization component. Third, an adaptive model of the training set is proposed to alleviate the impact of corrupted or mislabeled training samples. Fourth, a continuous-space formulation of the DCF is introduced, enabling the fusion of multiresolution features and sub-pixel accurate predictions. Finally, the problems of computational complexity and overfitting are addressed by investigating dimensionality reduction techniques.

As a second contribution, different feature representations for tracking are investigated. A particular focus is put on the analysis of color features, which had been largely overlooked in prior tracking research. This thesis also studies the use of deep features in DCF-based tracking. While many vision problems have greatly benefited from the advent of deep learning, it has proven difficult to harvest the power of such representations for tracking. In this thesis it is shown that both shallow and deep layers contribute positively. Furthermore, the problem of fusing their complementary properties is investigated.

The final major contribution of this thesis regards the prediction of the target scale. In many applications, it is essential to track the scale, or size, of the target since it is strongly related to the relative distance. A thorough analysis of how to integrate scale estimation into the DCF framework is performed. A one-dimensional scale filter is proposed, enabling efficient and accurate scale estimation.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 71
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1926
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
urn:nbn:se:liu:diva-147543 (URN)10.3384/diss.diva-147543 (DOI)9789176853320 (ISBN)
Public defence
2018-06-11, Ada Lovelace, B-huset, Campus Valla, Linköping, 13:00 (English)
Opponent
Supervisors
Available from: 2018-05-03 Created: 2018-04-25 Last updated: 2018-09-19Bibliographically approved

Open Access in DiVA

fulltext(8284 kB)239 downloads
File information
File name FULLTEXT02.pdfFile size 8284 kBChecksum SHA-512
2a51005981c8bdf5702dee5e6d5eb86edf0ec8aad06f6abac5f62c0569197cab52c4856949d73f83228195208215c12e8d9fbe26b476cf00aad48f60530b860c
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Danelljan, MartinHäger, GustavKhan, Fahad ShahbazFelsberg, Michael

Search in DiVA

By author/editor
Danelljan, MartinHäger, GustavKhan, Fahad ShahbazFelsberg, Michael
By organisation
Computer VisionFaculty of Science & Engineering
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 239 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 6158 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf