liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3
Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
Drexel University, PA 19104 USA.
Show others and affiliations
2015 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 118, no 9, 094304- p.Article in journal (Refereed) Published
Abstract [en]

Herein, we report on the phase stabilities and crystal structures of two newly discovered ordered, quaternary MAX phases-Mo2TiAlC2 and Mo2Ti2AlC3-synthesized by mixing and heating different elemental powder mixtures of mMo:(3-m) Ti:1.1Al:2C with 1.5 less than= m less than= 2.2 and 2Mo: 2Ti:1.1Al:2.7C to 1600 degrees C for 4 h under Ar flow. In general, for m greater than= 2 an ordered 312 phase, (Mo2Ti) AlC2, was the majority phase; for mless than 2, an ordered 413 phase (Mo2Ti2)AlC3, was the major product. The actual chemistries determined from X-ray photoelectron spectroscopy (XPS) are Mo2TiAlC1.7 and Mo2Ti1.9Al0.9C2.5, respectively. High resolution scanning transmission microscopy, XPS and Rietveld analysis of powder X-ray diffraction confirmed the general ordered stacking sequence to be Mo-Ti-Mo-Al-Mo-Ti-Mo for Mo2TiAlC2 and Mo-Ti-Ti-Mo-Al-Mo-Ti-Ti-Mo for Mo2Ti2AlC3, with the carbon atoms occupying the octahedral sites between the transition metal layers. Consistent with the experimental results, the theoretical calculations clearly show that M layer ordering is mostly driven by the high penalty paid in energy by having the Mo atoms surrounded by C in a face-centered configuration, i.e., in the center of the Mn+1Xn blocks. At 331 GPa and 367 GPa, respectively, the Youngs moduli of the ordered Mo2TiAlC2 and Mo2Ti2AlC3 are predicted to be higher than those calculated for their ternary end members. Like most other MAX phases, because of the high density of states at the Fermi level, the resistivity measurement over 300 to 10K for both phases showed metallic behavior. (C) 2015 AIP Publishing LLC.

Place, publisher, year, edition, pages
AMER INST PHYSICS , 2015. Vol. 118, no 9, 094304- p.
National Category
Physical Sciences
URN: urn:nbn:se:liu:diva-121746DOI: 10.1063/1.4929640ISI: 000360926500020OAI: diva2:859447

Funding Agencies|U.S. Army Research Office [W911NF-12-1-0132, W911NF-11-1-0283]; Swedish Research Council [621-2011-4420, 642-2013-8020, 621-2014-4890]; Swedish Foundation for Strategic Research through the Synergy Grant FUNCASE Functional Carbides for Advanced Surface Engineering; Future Research Leaders 5 Program; ERC [258509]; Knut and Alice Wallenberg Foundation

Available from: 2015-10-07 Created: 2015-10-05 Last updated: 2016-08-31

Open Access in DiVA

fulltext(4234 kB)178 downloads
File information
File name FULLTEXT01.pdfFile size 4234 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Dahlqvist, MartinLu, JunHultman, LarsEklund, PerRosén, Johanna
By organisation
Thin Film PhysicsFaculty of Science & Engineering
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 178 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 261 hits
ReferencesLink to record
Permanent link

Direct link