liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stoichiometric, epitaxial ZrB2 thin films with low oxygen-content deposited by magnetron sputtering from a compound target: Effects of deposition temperature and sputtering power
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-4898-5115
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2015 (English)In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 430, 55-62 p.Article in journal (Refereed) Published
Abstract [en]

Zirconium diboride (ZrB2) thin films have been deposited on 4H-SiC(0001) substrates by direct current magnetron sputtering from a compound target. The effect of deposition temperature (500-900 degrees C) and sputtering power (100-400 W) on the composition and structure of the films have been investigated. Electron microscopy and X-ray diffraction reveal that high sputtering power values and high deposition temperatures are favorable to enhance the crystalline order of the epitaxial 0001 oriented films. X-ray photoelectron spectroscopy shows that the composition of the films is near-stoichiometric for all deposition temperatures and for high sputtering power values of 300 W and 400 W, whereas under-stoichiometric films arc obtained when applying 100 W or 200 W. Decreasing the deposition temperature, or in particular the sputtering power, result in higher C and O impurity levels. The resistivity of the films was evaluated by four-point-probe measurements and found to scale with the amount of O impurities in the films. The lowest resistivity value obtained is 130 mu Omega cm, which makes the ZrB2 films interesting as an electrical contact material. (C) 2015 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2015. Vol. 430, 55-62 p.
Keyword [en]
X-ray diffraction; X-ray photoelectron spectroscopy; Physical vapor deposition processes; Borides
National Category
Physical Sciences Chemical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-122186DOI: 10.1016/j.jcrysgro.2015.08.012ISI: 000362014800010OAI: oai:DiVA.org:liu-122186DiVA: diva2:865067
Note

Funding Agencies|Swedish Research Council (VR) [621 2010-3921]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant) [SFO-Mat-LiU 2009-00971]; VINN Excellence Center Functional Nanoscale Materials (FunMat) [2005-02666]; Knut and Alice Wallenberg Foundation [2011.0143]

Available from: 2015-10-26 Created: 2015-10-23 Last updated: 2017-12-01
In thesis
1. ZrB2 Thin Films: Growth and Characterization
Open this publication in new window or tab >>ZrB2 Thin Films: Growth and Characterization
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Zirconium diboride, ZrB2, is a ceramic material with bulk properties such as high melting point (3245 °C), high hardness (23 GPa), and low resistivity (~8 μΩcm). Thin film growth of ZrB2 using physical vapor deposition has suffered from problems with films deviating from stoichiometry and with high levels of contaminants, especially high oxygen content. The homogeneity range of ZrB2 is very narrow, and consequently it is vital to achieve the correct stoichiometry to grow films with high crystalline order.

This thesis describes a direct current magnetron sputtering process to grow stoichiometric ZrB2 thin films with a low degree of impurities. Growth of epitaxial ZrB2 films was achieved on 4H-SiC(0001), Si(111) and Al2O3(0001) substrates. The effect of deposition temperature and power applied on the sputtering target was investigated and showed that high power density (8.77 Wcm-2) and high temperature (900 °C) resulted in films with the best composition and the highest crystal quality. ZrB2 films on GaN(0001) templates exhibit an amorphous layer at the film-substrate interface and the resulting films are either polycrystalline or textured.

Resistivity measurements showed that the ZrB2 thin films exhibit typical resistivity values of ~100-250 μΩcm and that the resistivity decreased with increasing deposition temperature.

Nanoindentation was applied to assess the mechanical properties of the films. The epitaxial ZrB2 films exhibit high elastic recovery and a hardness of ~45-50 GPa, twice as high as the literature bulk value. In addition, evaluation of the mechanical properties was performed at high temperatures of up to 600 °C and showed that the epitaxial films retained a higher hardness, compared to textured ZrB2 films and bulk, also at these temperatures.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 67 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1744
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-128614 (URN)10.3384/diss.diva-128614 (DOI)978-91-7685-833-2 (ISBN)
Public defence
2016-06-17, Planck, Fysikhuset, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2016-05-25 Created: 2016-05-25 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

fulltext(929 kB)40 downloads
File information
File name FULLTEXT01.pdfFile size 929 kBChecksum SHA-512
ee2f61653402f567106482c8a77a3bfdb12b8025cae328126e12bc145f387f6204e60345af311606d8896a1acbe043fdaf144b8417932bdb330e82a3f8ae249a
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Tengdelius, LinaGreczynski, GrzegorzLu, JunForsberg, UrbanHultman, LarsJanzén, ErikHögberg, Hans

Search in DiVA

By author/editor
Tengdelius, LinaGreczynski, GrzegorzLu, JunForsberg, UrbanHultman, LarsJanzén, ErikHögberg, Hans
By organisation
Thin Film PhysicsFaculty of Science & EngineeringSemiconductor Materials
In the same journal
Journal of Crystal Growth
Physical SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 40 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 276 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf