liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Multi-Threaded Distributed System Simulations Using Transmission Line Element Method
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

By introducing physically motivated time delays, simulation models can be partitioned into decoupled independent sub-models. This enables parallel simulations on multi-core processors. An automatic algorithm is used for partitioning and running distributed system simulations. Methods for sorting and distributing components for good load balancing have been developed. Mathematical correctness during simulation is maintained by a busy-waiting thread synchronization algorithm. Independence between sub-models is achieved by using the transmission line element method. In contrast to the more commonly used centralized solvers, this method uses distributed solvers with physically motivated time delays, making simulations inherently parallel. Results show that simulation speed increases almost proportionally to the number of processor cores in the case of large models. However, overhead time costs mean that models need to be over a certain size to benefit from parallelization.

Keyword [en]
Distributed solvers, parallelism, problem partitioning, transmission line modelling, system simulation
National Category
Fluid Mechanics and Acoustics Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-122753OAI: oai:DiVA.org:liu-122753DiVA: diva2:872645
Available from: 2015-11-19 Created: 2015-11-19 Last updated: 2015-11-19Bibliographically approved
In thesis
1. Distributed System Simulation Methods: For Model-Based Product Development
Open this publication in new window or tab >>Distributed System Simulation Methods: For Model-Based Product Development
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Distributed system simulation can increase performance, re-usability and modularity in model-based product development. This thesis investigates four aspects of distributed simulation: multi-threaded simulations, simulation tool coupling, distributed equation solvers and parallel optimization algorithms.

Multi-threaded simulation makes it possible to split up the workload over several processing units. This reduces simulation time, which can save both time and money during the product development cycle. The transmission line element method (TLM) is used to decouple models to independent sub-models.

Different simulation tools are suitable for different problems. Tool coupling makes it possible to use the best suited tool for simulating each part of the whole product. Models from different tools can then be coupled into one aggregated simulation model. An emerging standard for tool coupling is the Functional Mock-up Interface (FMI). It is investigated how this can be used in conjunction with TLM.

Equation-based object-oriented languages (EOOs) are becoming increasing popular. A logical approach is to let the equation solvers maintain the same structure that was used in the modelling process. Methods for achieving this using TLM and FMI are implemented and evaluated.

In addition to parallel simulations, it is also possible to use parallel optimization algorithms. This introduces parallelism on several levels. For this reason, an algorithm for profile-based multi-level scheduling is proposed.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 118 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1732
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:liu:diva-122754 (URN)10.3384/diss.diva-122754 (DOI)978-91-7685-875-2 (print) (ISBN)
Public defence
2015-12-18, ACAS, A-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2015-11-19 Created: 2015-11-19 Last updated: 2015-12-02Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Braun, RobertKrus, Petter
By organisation
Fluid and Mechatronic SystemsThe Institute of Technology
Fluid Mechanics and AcousticsElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link