liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses
Durban University of Technology, South Africa.
Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
Indian Institute Technology, India.
Show others and affiliations
2015 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 43, 23848-23856 p.Article in journal (Refereed) Published
Abstract [en]

Molecular imprinting generates robust, efficient, and highly mesoporous surfaces for biointeractions. Mechanistic interfacial interaction between the surface of core substrate and protein corona is crucial to understand the substantial microbial toxic responses at a nanoscale. In this study, we have focused on the mechanistic interactions between synthesized saponin imprinted zinc oxide nanohoneycombs (SIZnO NHs), average size 80-125 nm, surface area 20.27 m(2)/g, average pore density 0.23 pore/nm and number-average pore size 3.74 nm and proteins corona of bacteria. The produced SIZnO NHs as potential antifungal and antibacterial agents have been studied on Sclerotium rolfsii (S. rolfsii), Pythium debarynum (P. debarynum) and Escherichia coil (E. coli), Staphylococcus aureus (S. aureus), respectively. SIZnO NHs exhibited the highest antibacterial (similar to 50%) and antifungal (similar to 40%) activity against Gram-negative bacteria (E. coil) and fungus (P. debarynum), respectively at concentration of 0.1 mol. Scanning electron spectroscopy (SEM) observation showed that the ZnO NHs ruptured the cell wall of bacteria and internalized into the cell. The molecular docking studies were carried out using binding proteins present in the gram negative bacteria (lipopolysaccharide and lipocalin Blc) and gram positive bacteria (Staphylococcal Protein A, SpA). It was envisaged that the proteins present in the bacterial cell wall were found to interact and adsorb on the surface of SIZnO NHs thereby blocking the active sites of the proteins used for cell wall synthesis. The binding affinity and interaction energies were higher in the case of binding proteins present in gram negative bacteria as compared to that of gram positive bacteria. In addition, a kinetic mathematical model (KMM) was developed in MATLAB to predict the internalization in the bacterial cellular uptake of the ZnO NHs for better understanding of their controlled toxicity. The results obtained from KMM exhibited a good agreement with the experimental data. Exploration of mechanistic interactions, as well as the formation of bioconjugate of proteins and ZnO NHs would play a key role to interpret more complex biological systems in nature.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2015. Vol. 7, no 43, 23848-23856 p.
Keyword [en]
ZnO nanohoneycombs; protein corona; interaction energies; molecular docking; microbial toxicity
National Category
Biological Sciences
URN: urn:nbn:se:liu:diva-123137DOI: 10.1021/acsami.5b06617ISI: 000364355500005PubMedID: 26439810OAI: diva2:877700

Funding Agencies|Iranian Ministry of Science, Research and Technology

Available from: 2015-12-07 Created: 2015-12-04 Last updated: 2015-12-15

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Tiwari, Ashutosh
By organisation
Biosensors and BioelectronicsFaculty of Science & EngineeringDepartment of Physics, Chemistry and Biology
In the same journal
ACS Applied Materials and Interfaces
Biological Sciences

Search outside of DiVA

GoogleGoogle ScholarTotal: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 113 hits
ReferencesLink to record
Permanent link

Direct link