liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Respiratory gating for proton beam scanning versus photon 3D-CRT for breast cancer radiotherapy
Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology. Linköping University, Faculty of Medicine and Health Sciences.ORCID iD: 0000-0001-8425-8110
Lund University, Sweden.
Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.ORCID iD: 0000-0002-4369-1396
Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences.ORCID iD: 0000-0001-7193-4458
Show others and affiliations
2016 (English)In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 55, no 5, 577-583 p.Article in journal (Refereed) Published
Abstract [en]

Background Respiratory gating and proton therapy have both been proposed to reduce the cardiopulmonary burden in breast cancer radiotherapy. This study aims to investigate the additional benefit of proton radiotherapy for breast cancer with and without respiratory gating.

Material and methods Twenty left-sided patients were planned on computed tomography (CT)-datasets acquired during enhanced inspiration gating (EIG) and free-breathing (FB), using photon three-dimensional conformal radiation therapy (3D-CRT) and scanned proton beams. Ten patients received treatment to the whole breast only (WBO) and 10 were treated to the breast and the regional lymph nodes (BRN). Dosimetric parameters characterizing the coverage of target volumes and the cardiopulmonary burden were compared using a paired, two-tailed Student’s t-test.

Results Protons ensured comparable or better target coverage than photons in all patients during both EIG and FB. The heterogeneity index decreased from 12% with photons to about 5% with protons. The mean dose to the ipsilateral lung was reduced in BRN patients from 12 Gy to 7 Gy (RBE) in EIG and from 14 Gy to 6-7 Gy (RBE) in FB, while for WBO patients all values were about 5-6 Gy (RBE). The mean dose to heart decreased by a factor of four in WBO patients [from 1.1 Gy to 0.3 Gy (RBE) in EIG and from 2.1 Gy to 0.5 Gy (RBE) in FB] and 10 in BRN patients [from 2.1 Gy to 0.2 Gy (RBE) in EIG and from 3.4 Gy to 0.3 Gy (RBE) in FB]. Similarly, the mean and the near maximum dose to left anterior descending artery (LAD) were significantly lower (p<0.05) with protons in comparison with photons.

Conclusion Proton spot scanning has a high potential to reduce the irradiation of organs at risk and other normal tissues for most patients, beyond what could be achieved with EIG and photon therapy. The largest dose sparing has been seen for BRN patients, both in terms of cardiopulmonary burden and integral dose.

Place, publisher, year, edition, pages
2016. Vol. 55, no 5, 577-583 p.
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:liu:diva-123274DOI: 10.3109/0284186X.2015.1120883ISI: 000375566700008OAI: oai:DiVA.org:liu-123274DiVA: diva2:878692
Note

Funding agencies:  LiU Cancer research network at Linkoping University; Region Ostergotland; ALF Grants from Region Ostergotland (Sweden)

Available from: 2015-12-09 Created: 2015-12-09 Last updated: 2016-07-15
In thesis
1. Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications
Open this publication in new window or tab >>Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The purpose of this thesis was to study the clinical implications of modern radiotherapy techniques for breast cancer treatment. This was investigated in several individual studies.

Study I investigated the implications of using the analytical anisotropic algorithm (AAA) from the perspective of clinical recommendations for breast cancer radiotherapy. Pencil beam convolution plans of 40 breast cancer patients were recalculated with AAA. The latter plans had a significantly worse coverage of the planning target volume (PTV) with the 93% isodose, higher maximum dose in hotspots, higher volumes of the ipsilateral lung receiving doses below 25 Gy and smaller volumes with doses above 25 Gy. AAA also predicted lower doses to the heart.

Study II investigated the implications of using the irregular surface compensator (ISC), an electronic compensation algorithm, in comparison to three‐dimensional conformal radiotherapy (3D‐CRT) for breast cancer treatment. Ten breast cancer patients were planned with both techniques. The ISC technique led to better coverage of the clinical target volume of the tumour bed (CTV‐T) and PTV in almost all patients with significant improvement in homogeneity.

Study III investigated the feasibility of using scanning pencil beam proton therapy for regional and loco‐regional breast cancer with comparison of ISC photon planning. Ten patients were included in the study, all with dose heterogeneity in the target and/or hotspots in the normal tissues outside the PTV. The proton plans showed comparable or better CTV‐T and PTV coverage, with large reductions in the mean doses to the heart and the ipsilateral lung.

Study IV investigated the added value of enhanced inspiration gating (EIG) for proton therapy. Twenty patients were planned on CT datasets acquired during EIG and freebreathing (FB) using photon 3D‐CRT and scanning proton therapy. Proton spot scanning has a high potential to reduce the irradiation of organs‐at‐risk for most patients, beyond what could be achieved with EIG and photon therapy, especially in terms of mean doses to the heart and the left anterior descending artery.

Study V investigated the impact of physiological breathing motion during proton radiotherapy for breast cancer. Twelve thoracic patients were planned on CT datasets during breath‐hold at inhalation phase and breath‐hold at exhalation phase. Between inhalation and exhalation phase there were very small differences in dose delivered to the target and cardiovascular structures, with very small clinical implication.

The results of these studies showed the potential of various radiotherapy techniques to improve the quality of life for breast cancer patients by limiting the dose burden for normal tissues.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 64 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1505
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-127370 (URN)10.3384/diss.diva-127370 (DOI)978-91-7685-850-9 (Print) (ISBN)
Public defence
2016-06-01, Hugo Theorell, Campus US, Linköping, 13:00 (Swedish)
Opponent
Supervisors
Available from: 2016-04-27 Created: 2016-04-23 Last updated: 2016-05-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPDF

Search in DiVA

By author/editor
Flejmer, Anna M.Dohlmar, FridaJosefsson, DanNilsson, MatsWitt Nyström, PetraDasu, Alexandru
By organisation
Division of Clinical SciencesDepartment of OncologyFaculty of Medicine and Health SciencesDepartment of Radiation PhysicsDivision of Radiological SciencesDepartment of Medical and Health SciencesDepartment of Radiation Physics
In the same journal
Acta Oncologica
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 537 hits
ReferencesLink to record
Permanent link

Direct link