liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fully-solution-processed organic solar cells with a highly efficient paper-based light trapping element
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2015 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 48, 24289-24296 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We demonstrate the use of low cost paper as an efficient light-trapping element for thin film photovoltaics. We verify its use in fully-solution processed organic photovoltaic devices with the highest power conversion efficiency and the lowest internal electrical losses reported so far, the architecture of which - unlike most of the studied geometries to date - is suitable for upscaling, i.e. commercialization. The use of the paper-reflector enhances the external quantum efficiency (EQE) of the organic photovoltaic device by a factor of approximate to 1.5-2.5 over the solar spectrum, which rivals the light harvesting efficiency of a highly-reflective but also considerably more expensive silver mirror back-reflector. Moreover, by detailed theoretical and experimental analysis, we show that further improvements in the photovoltaic performance of organic solar cells employing PEDOT:PSS as both electrodes rely on the future development of high-conductivity and high-transmittance PEDOT:PSS. This is due optical losses in the PEDOT:PSS electrodes.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2015. Vol. 3, no 48, 24289-24296 p.
National Category
Biological Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-123845DOI: 10.1039/c5ta07154bISI: 000366163000014OAI: oai:DiVA.org:liu-123845DiVA: diva2:892841
Note

Funding Agencies|Swedish Energy Agency; Knut and Alice Wallenberg Foundation through a Wallenberg Scholar grant; Knut and Alice Wallenberg Foundation through the project Power Papers

Available from: 2016-01-11 Created: 2016-01-11 Last updated: 2016-01-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Tang, ZhengElfwing, AndersMelianas, ArmantasBergqvist, JonasBao, QinyeInganäs, Olle
By organisation
Biomolecular and Organic ElectronicsFaculty of Science & EngineeringSurface Physics and Chemistry
In the same journal
Journal of Materials Chemistry A
Biological SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 245 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf