liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Formation mechanisms of covalent nanostructures from density functional theory
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1345-0006
2016 (English)In: On-surface synthesis / [ed] André Gourdon, Springer, 2016, 269-287 p.Chapter in book (Refereed)
Abstract [en]

In this chapter, it is demonstrated how electronic structure calculations, with focus on density functional theory, can be used to gain insight about on-surface reactions. I first give a brief introduction to how density functional theory can be used to study reactions. The focus is then shifted to two different types of on-surface reactions, highlighting the theoretical work that has been performed to gain detailed atomistic insight into them. First, the state of the art of the theory behind on-surface Ullmann coupling is described. In this reaction, molecular building blocks dehalogenate, which enables them to covalently couple. The most crucial reaction parameters are identified—the diffusion and coupling barriers of surface-supported radicals—and the potential for theory to optimize these is discussed. We then concentrate on the homo-coupling between terminal alkynes, a rudimentarily different process where molecules initially couple before undergoing a dehydrogenation step. The theory of the mechanism behind this coupling strategy is less developed than that of the on-surface Ullmann coupling, where fundamental questions remain to be unraveled. For example, by the subtle change of substrate from Ag to Au, the on-surface alkyne chemistry is completely altered from the homo-coupling to a cyclodehydrogenation reaction for the same molecular building block, of which origin remains unknown. The main objective of the chapter is to give an impression of what kind of information theory can obtain about reaction on surface, as well as to motivate and inspire for future theoretical studies, which will be needed to turn on-surface synthesis into a more predictive discipline.

Place, publisher, year, edition, pages
Springer, 2016. 269-287 p.
Series
, Advances in Atom and Single Molecule Machines, ISSN 2193-9691 ; 8
National Category
Nano Technology Physical Chemistry Theoretical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-124196DOI: 10.1007/978-3-319-26600-8_13ISI: 000373067900013ISBN: 978-3-319-26598-8 (Print)ISBN: 978-3-319-26600-8 (Online)OAI: oai:DiVA.org:liu-124196DiVA: diva2:896543
Available from: 2016-01-21 Created: 2016-01-21 Last updated: 2016-04-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textFind book in another country/Hitta boken i ett annat land

Search in DiVA

By author/editor
Björk, Jonas
By organisation
Theoretical ChemistryFaculty of Science & Engineering
Nano TechnologyPhysical ChemistryTheoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link