liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Cubic silicon carbide as a potential photovoltaic material
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
University of Oslo, Norway.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
University of Oslo, Norway.
Show others and affiliations
2016 (English)In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 145, 104-108 p.Article in journal (Refereed) PublishedText
Abstract [en]

In this work we present a significant advancement in cubic silicon carbide (3C-SiC) growth in terms of crystal quality and domain size, and indicate its potential use in photovoltaics. To date, the use of 3C-SiC for photovoltaics has not been considered due to the band gap of 2.3 eV being too large for conventional solar cells. Doping of 3C-SiC with boron introduces an energy level of 0.7 eV above the valence band. Such energy level may form an intermediate band (IB) in the band gap. This IB concept has been presented in the literature to act as an energy ladder that allows absorption of sub-bandgap photons to generate extra electron-hole pairs and increase the efficiency of a solar cell. The main challenge with this concept is to find a materials system that could realize such efficient photovoltaic behavior. The 3C-SiC bandgap and boron energy level fits nicely into the concept, but has not been explored for an IB behavior. For a long time crystalline 3C-SiC has been challenging to grow due to its metastable nature. The material mainly consists of a large number of small domains if the 3C polytype is maintained. In our work a crystal growth process was realized by a new approach that is a combination of initial nucleation and step-flow growth. In the process, the domains that form initially extend laterally to make larger 3C-SiC domains, thus leading to a pronounced improvement in crystalline quality of 3C-SiC. In order to explore the feasibility of IB in 3C-SiC using boron, we have explored two routes of introducing boron impurities; ion implantation on un-doped samples and epitaxial growth on un-doped samples using pre-doped source material. The results show that 3C-SiC doped with boron is an optically active material, and thus is interesting to be further studied for IB behavior. For the ion implanted samples the crystal quality was maintained even after high implantation doses and subsequent annealing. The same was true for the samples grown with pre-doped source material, even with a high concentration of boron impurities. We present optical emission and absorption properties of as-grown and boron implanted 3C-SiC. The low-temperature photoluminescence spectra indicate the formation of optically active deep boron centers, which may be utilized for achieving an IB behavior at sufficiently high dopant concentrations. We also discuss the potential of boron doped 3C-SiC base material in a broader range of applications, such as in photovoltaics, biomarkers and hydrogen generation by splitting water. (C) 2015 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2016. Vol. 145, 104-108 p.
Keyword [en]
Intermediate band; Silicon carbide; Solar cell; Photovoltaic; Boron; Doping; 3C-SiC; Cubic
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-124457DOI: 10.1016/j.solmat.2015.08.029ISI: 000367772200004OAI: oai:DiVA.org:liu-124457DiVA: diva2:899850
Note

Funding Agencies|Angpanneforeningen Research Foundation (AForsk); NFR SunSic project; Swedish Energy Agency; Swedish Governmental Agency for Innovation Systems (Vinnova); STAEDTLER Foundation

Available from: 2016-02-02 Created: 2016-02-01 Last updated: 2016-02-23

Open Access in DiVA

fulltext(342 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 342 kBChecksum SHA-512
d5667e314c1cd10e6d4eb6551fd282920e63f87159aaf344130b648274acb67eae64e35897543950a066ff401b095ad36b2eef101d355c1c413bdd9824f0bfe9
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Syväjärvi, MikaelJokubavicius, ValdasSun, JianwuLiu, XinyuJansson, Mattias
By organisation
Semiconductor MaterialsFaculty of Science & EngineeringFunctional Electronic Materials
In the same journal
Solar Energy Materials and Solar Cells
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 171 hits
ReferencesLink to record
Permanent link

Direct link