liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Three-Dimensional LEFM Prediction of Fatigue Crack Propagation in a Gas Turbine Disk Material at Component Near Conditions
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
Siemens Ind Turbomachinery AB, Sweden.
Siemens Ind Turbomachinery AB, Sweden.
Siemens Ind Turbomachinery AB, Sweden.
Show others and affiliations
2016 (English)In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 138, no 4, article id 042506Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

In this paper, the possibility to use linear elastic fracture mechanics (LEFM), with and without a superimposed residual stress field, to predict fatigue crack propagation in the gas turbine disk material Inconel 718 has been studied. A temperature of 400 degrees C and applied strain ranges corresponding to component near conditions have been considered. A three-dimensional crack propagation software was used for determining the stress intensity factors (SIFs) along the crack path. In the first approach, a linear elastic material behavior was used when analyzing the material response. The second approach extracts the residual stresses from an uncracked model with perfectly plastic material behavior after one loading cycle. As a benchmark, the investigated methods are compared to experimental tests, where the cyclic lifetimes were calculated by an integration of Paris law. When comparing the results, it can be concluded that the investigated approaches give good results, at least for longer cracks, even though plastic flow was taking place in the specimen. The pure linear elastic simulation overestimates the crack growth for all crack lengths and gives conservative results over all considered crack lengths. Noteworthy with this work is that the 3D-crack propagation could be predicted with the two considered methods in an LEFM context, although plastic flow was present in the specimens during the experiments.

Place, publisher, year, edition, pages
ASME , 2016. Vol. 138, no 4, article id 042506
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-126240DOI: 10.1115/1.4031526ISI: 000371125800020OAI: oai:DiVA.org:liu-126240DiVA, id: diva2:913461
Note

Funding Agencies|Siemens Industrial Turbomachinery AB through Research Consortium of Materials Technology for Thermal Energy Processes [KME-702]; Swedish Energy Agency

Available from: 2016-03-21 Created: 2016-03-21 Last updated: 2017-11-30
In thesis
1. Aspects of Crack Growth in Single-Crystal Nickel-Base Superalloys
Open this publication in new window or tab >>Aspects of Crack Growth in Single-Crystal Nickel-Base Superalloys
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This Licentiate of Engineering thesis is a product of the results generated in the research project KME-702, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys.

The main objective of this work is to model the fatigue crack propagation behaviour in single-crystal nickel-base superalloys. To achieve this, the influence of the crystal orientations on the cracking behaviour is assessed. The results show that the crystal orientation is strongly affecting the material response and must be accounted for. Furthermore, a linear elastic crack driving force parameter suitable for describing crystallographic cracking has been developed. This parameter is based on resolved anisotropic stress intensity factors and is able to predict the correct crystallographic cracking plane after a transition from a Mode I crack. Finally, a method to account for inelastic deformations in a linear elastic fracture mechanics context was investigated. A residual stress field is extracted from an uncracked finite-element model with a perfectly plastic material model and superimposed on the stress field from the cracked model with a linear elastic material model to account for the inelastic deformations during the determination of the crack driving force. The modelling work is validated by material testing on two different specimen geometries at different temperatures.

This Licentiate of Engineering thesis consists of two parts, where Part I gives an introduction and background to the research area, while Part II consists of three papers.

Abstract [sv]

Denna licentiatavhandling är en produkt av resultat som genererats i forskningsprojektet KME-702, och omfattar modellering, mikrostrukturundersökningar och materialprovning av gjutna nickelbaserade superlegeringar.

Huvudsyftet med detta arbete är att modellera sprickförloppet under utmattning i enkristallina nickelbaserade superlegeringar. För att uppnå detta har kristallorienteringens inverkan på sprickbeteendet utvärderats. Resultaten visar att kristallorienteringen har en stark inverkan på materialbeteendet, således måste hänsyn till denna tas. Dessutom har en linjär-elastisk sprickdrivkraftsparameter lämplig att beskriva kristallografisk sprickbildning utvecklats. Denna parameter är baserad på anisotropa spänningsintensitetsfaktorer på kristallplan och kan prediktera det korrekta kristallografiska sprickplanet efter övergång från Modus I spricka. Slutligen har undersökts en metod för att ta hand om inelastiska deformationer i en linjär-elastisk brottmekanikskontext. Ett restspänningsfält extraherades från en osprucken finita element modell med en ideal plastisk materialmodell. Denna överlagrades på spänningsfältet från den spruckna modellen, som analyserades med en linjär-elastisk materialmodell, för att ta hänsyn till de inelastiska deformationerna vid bestämning av sprickdrivkraften. Modelleringsarbetet validerades genom materialprovning på två olika provgeometrier vid olika temperaturer.

Licentiatavhandlingen består av två delar, där del I ger en introduktion och bakgrund till forskningsområdet medan del II består av tre papper.

Abstract [de]

Dieses Lizentiat der Ingenieurwissenschaften ist im Rahmen des Forschungsprojekts KME-702 entstanden, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst.

Das Hauptziel dieser Arbeit ist die Modellierung der Ermüdungsrissausbreitung in einkristallinen nickelbasierten Superlegierungen. Um dieses zu erreichen, wurde der Einfluss der Kristallorientierungen auf das Rissverhalten untersucht. Die Ergebnisse zeigen, dass die Kristallorientierung das Materialverhalten stark beeinflusst und daher berücksichtigt werden muss. Darüber hinaus wurde ein linear elastischer Rissantriebskraftparameter entwickelt, der zum Beschreiben von kristallographischen Rissen geeignet ist. Dieser Parameter basiert auf aufgelösten anisotropen Spannungsintensitätsfaktoren und ist in der Lage, die korrekte kristallographische Rissebene nach einem Übergang von einem Modus I Riss vorherzusagen. Abschließend wird in einem linear-elastisch bruchmechanischen Kontext eine Methode untersucht, die nichtelastischen Deformationen bei der Bestimmung der Rissantriebskraft zu berücksichtigen. Dazu wird aus einem Finite-Elemente Modell, welches keinen Riss aufweist und mit einem perfekt plastischen Materialmodell beschrieben wird, das Restspannungsfeld extrahiert und dem Spannungsfeld überlagert, welches aus dem Modell mit Riss unter Verwendung eines linear elastischen Materialmodells erzeugt wurde. Die Modellierung wird durch Materialtests an zwei verschiedenen Probengeometrien bei unterschiedlichen Temperaturen validiert.

Dieses Lizentiat der Ingenieurwissenschaften besteht aus zwei Teilen, wobei Teil I eine Einführung und einen Hintergrund in das Forschungsgebiet gibt, während Teil II aus drei Forschungsartikeln besteht.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. p. 26
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1794
National Category
Applied Mechanics
Identifiers
urn:nbn:se:liu:diva-143058 (URN)10.3384/lic.diva-143058 (DOI)9789176853955 (ISBN)
Presentation
2017-12-15, A35, A-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2017-11-20 Created: 2017-11-20 Last updated: 2017-11-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Busse, ChristianMoverare, JohanSimonsson, KjellLeidermark, Daniel

Search in DiVA

By author/editor
Busse, ChristianMoverare, JohanSimonsson, KjellLeidermark, Daniel
By organisation
Solid MechanicsFaculty of Science & EngineeringEngineering Materials
In the same journal
Journal of engineering for gas turbines and power
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 362 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf