liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates
Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.ORCID iD: 0000-0003-1107-3929
Department of Earth Sciences, University of Gothenburg, Göteborg, Sweden.
Show others and affiliations
2015 (English)In: Limnology and Oceanography, ISSN 0024-3590, E-ISSN 1939-5590Article in journal (Refereed) Epub ahead of printText
Abstract [en]

Lakes are major sources of methane (CH4) to the atmosphere that contribute significantly to the global budget. Recent studies have shown that diffusive fluxes, ebullition and surface water CH4 concentrations can differ significantly within lakes—spatially and temporally. CH4 fluxes may be affected at longer scales in response to seasons, temperature, lake mixing events, short term weather events like pressure variations, shifting winds and diel cycles. Frequent measurements of fluxes in the same system and integrated assessments of the impacts of the spatio-temporal variability are rare. Thereby, large scale assessments frequently lack information on this variability which can potentially lead to biased estimates. In this study, we analysed the variability of CH4 fluxes and surface water CH4 concentrations across open water areas of lakes in a small catchment in southwest Sweden over two annual cycles. Significant patterns in CH4 concentrations, diffusive fluxes, ebullition and total fluxes were observed in space (between and within lakes) and in time (over diel cycles to years). Differences observed among the lakes can be associated with lake characteristics. The spatial variability within lakes was linked to depth or distance to stream inlets. Temporal variability was observed at diel to seasonal scales and was influenced by weather events. The fluxes increased exponentially with temperature in all three lakes, with stronger temperature dependence with decreasing depth. By comparing subsets of our data with estimates using all data we show that considering the spatio-temporal variability in CH4 fluxes is critical when making whole lake or annual budgets.

Place, publisher, year, edition, pages
John Wiley & Sons, 2015.
National Category
Climate Research Oceanography, Hydrology, Water Resources
URN: urn:nbn:se:liu:diva-126776DOI: 10.1002/lno.10222OAI: diva2:916940
Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2016-05-04Bibliographically approved
In thesis
1. Freshwater methane and carbon dioxide fluxes: Spatio-temporal variability and an integrated assessment of lake and stream emissions in a catchment
Open this publication in new window or tab >>Freshwater methane and carbon dioxide fluxes: Spatio-temporal variability and an integrated assessment of lake and stream emissions in a catchment
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Metan- och koldioxidflöden från sötvattensmiljöer : Variation i tid och rum samt en integrerad bedömning av emissioner från sjöar och vattendrag i ett avrinningsområde
Abstract [en]

Freshwater bodies such as lakes and streams release the greenhouse gases methane (CH4) and carbon dioxide (CO2) into the atmosphere. Global freshwater CH4 and CO2 emissions have been estimated to be of a similar magnitude to the global land or ocean carbon sink, and are thus significant components of global carbon budgets. However, the data supporting global estimates frequently lacks information regarding spatial and temporal variability and are thus highly inaccurate. In this thesis, detailed studies of the spatio-temporal variability of CH4 and CO2 fluxes were conducted in the open water areas of lakes and streams within a whole catchment in Sweden. One aim was also to evaluate the importance of spatio-temporal variability in lake and stream fluxes when making whole catchment aquatic or large scale assessments. Apart from the expected large spatio-temporal variability in lake fluxes, interactions between spatial and temporal variability in CH4 fluxes were found. Shallow lakes and shallow areas of lakes were observed to emit more CH4 as compared to their deeper counterparts. This spatial variability interacted with the temporal variability driven by an exponential temperature response of the fluxes, which meant that shallow waters were more sensitive to warming than deeper ones. Such interactions may be important for climate feedbacks. Surface water CO2 in lakes showed significant spatio-temporal variability and, when considering variability in both space and time, CO2 fluxes were largely controlled by concentrations, rather than gas transfer velocities. Stream fluxes were also highly variable in space and time and in particular, stream CH4 fluxes were surprisingly large and more variable than CO2 fluxes. Fluxes were large from stream areas with steep slopes and periods of high discharge which occupied a small fraction of the total stream area and the total measurement period, respectively, and a failure to account for these spatially distinct or episodic high fluxes could lead to underestimates. The total aquatic fluxes from the whole catchment were estimated by combining the measurements in open waters of lakes and streams. Using our data, recommendations on improved study designs for representative measurements in lakes and streams were provided for future studies. Thus, this thesis presents findings relating to flux regulation in lakes and streams, and urges forthcoming studies to better consider spatio-temporal variability so as to achieve unbiased large-scale estimates.

Abstract [sv]

Sötvatten som sjöar och vattendrag är källor till växthusgaserna metan (CH4) och koldioxid (CO2) i atmosfären. De globala utsläppen av CH4 och CO2 från sötvatten har uppskattats vara av samma storleksordning som den globala land- eller havskolsänkan och är därmed viktiga delar av jordens växthusgasbudget. De globala uppskattningarna saknar ofta information om variation i tid och rum och är därmed mycket osäkra. Denna avhandling behandlar hur CH4- och CO2-flöden från öppet vatten i sjöar och vattendrag i ett avrinningsområde varierar rumsligt och tidsmässigt. Ett syfte var också att utvärdera betydelsen av dessa variationer när data extrapoleras för att göra storskaliga uppskattningar av växthusgasflöden från vattenmiljöer. Förutom de förväntade stora rumsliga och tidsmässiga variationerna i sjöars gasflöden identifierades interaktioner mellan rumsliga och tidsmässiga variation för CH4-flöden. Den rumsliga variabiliteten med högre CH4-flöden från grunda vatten interagerade med tidsvariationen, som i sin tur drevs av en exponentiell temperaturrespons av gasflödena. Det betyder att grunda vattenområden var mer känsliga för uppvärmning än djupare vatten och därmed att vattendjupet har betydelse för hur sjöars CH4-utsläpp påverkas av klimatet. Koncentrationer av CO2 i sjöars ytvatten uppvisade också en betydande rumslig och tidsmässig variation som tillsammans visar att CO2-flöden över längre perioder till stor del styrs av koncentrationer snarare än av gasutbyteshastigheter. Vattendragens gasflöden varierade också mycket i tid och rum. Detta gällde i synnerhet CH4-flödena vilka var förvånansvärt stora och mer varierande än CO2-flödena. Gasflödena var höga från områden i vattendrag med högre lutning och då det var höga vattenflöden, trots att dessa områden och tidsperioder utgjorde en bråkdel av den totala arean och mätperioden. Att inte räkna med dessa gasflöden från bäcksektioner med höga vattenhastigheter eller korta perioder med höga flöden, leder till underskattningar. De totala CH4- och CO2-flödena från öppet vatten i hela avrinningsområdet uppskattades genom att kombinera mätningar i sjöar och vattendrag. Denna avhandling visar att rumslig och tidsmässig variabilitet har stor betydelse, och den ger information om hur denna variation kan beaktas för bättre framtida mätningar och storskaliga uppskattningar av växthusgasflöden från sjöar och vattendrag.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 39 p.
Linköping Studies in Arts and Science, ISSN 0282-9800 ; 673
Lakes, streams, spatio-temporal variability, CH4 flux, CO2 flux, gas transfer velocity, Sjöar, vattendrag, rumsliga och tidsmässiga variationer, CH4-flöden, CO2-flöden, gasutbyteshastighet
National Category
Climate Research Oceanography, Hydrology, Water Resources Environmental Sciences Social Sciences Interdisciplinary
urn:nbn:se:liu:diva-126779 (URN)10.3384/diss.diva.126779 (DOI)978-91-7685-812-7 (Print) (ISBN)
Public defence
2016-05-13, TEMCAS, Hus T, Campus Valla, Linköping, 10:15 (English)
Swedish Research Council FormasSwedish Research Council
Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2016-09-05Bibliographically approved

Open Access in DiVA

fulltext(575 kB)24 downloads
File information
File name FULLTEXT01.pdfFile size 575 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Natchimuthu, SivakiruthikaSundgren, IngridGålfalk, MagnusDanielsson, ÅsaBastviken, David
By organisation
Tema Environmental ChangeFaculty of Arts and Sciences
In the same journal
Limnology and Oceanography
Climate ResearchOceanography, Hydrology, Water Resources

Search outside of DiVA

GoogleGoogle Scholar
Total: 24 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 196 hits
ReferencesLink to record
Permanent link

Direct link