The new generation laser-based FLASH 3D imaging sensors enable data collection at video rate. This opens up for realtime data analysis but also set demands on the signal processing. In this paper the possibilities and challenges with this new data type are discussed. The commonly used focal plane array based detectors produce range estimates that vary with the target's surface reflectance and target range, and our experience is that the built-in signal processing may not compensate fully for that. We propose a simple adjustment that can be used even if some sensor parameters are not known. The cost for the instantaneous image collection is, compared to scanning laser radar systems, lower range accuracy. By gathering range information from several frames the geometrical information of the target can be obtained. We also present an approach of how range data can be used to remove foreground clutter in front of a target. Further, we illustrate how range data enables target classification in near real-time and that the results can be improved if several frames are co-registered. Examples using data from forest and maritime scenes are shown.