liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Visual Verification of Space Weather Ensemble Simulations
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. (Scientific Visualization)ORCID iD: 0000-0002-2849-6146
NASA Goddard Space Flight Center, USA.
NASA Goddard Space Flight Center, USA.
NASA Goddard Space Flight Center, USA.
Show others and affiliations
2015 (English)In: 2015 IEEE Scientific Visualization Conference (SciVis), IEEE, 2015, p. 17-24Conference paper, Published paper (Refereed)
Abstract [en]

We propose a system to analyze and contextualize simulations of coronal mass ejections. As current simulation techniques require manual input, uncertainty is introduced into the simulation pipeline leading to inaccurate predictions that can be mitigated through ensemble simulations. We provide the space weather analyst with a multi-view system providing visualizations to: 1. compare ensemble members against ground truth measurements, 2. inspect time-dependent information derived from optical flow analysis of satellite images, and 3. combine satellite images with a volumetric rendering of the simulations. This three-tier workflow provides experts with tools to discover correlations between errors in predictions and simulation parameters, thus increasing knowledge about the evolution and propagation of coronal mass ejections that pose a danger to Earth and interplanetary travel

Place, publisher, year, edition, pages
IEEE, 2015. p. 17-24
National Category
Computer Sciences Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-128037DOI: 10.1109/SciVis.2015.7429487ISI: 000380564400003ISBN: 978-1-4673-9785-8 (electronic)OAI: oai:DiVA.org:liu-128037DiVA, id: diva2:928730
Conference
2015 IEEE Scientific Visualization Conference
Available from: 2016-05-16 Created: 2016-05-16 Last updated: 2018-07-19
In thesis
1. Tailoring visualization applications for tasks and users
Open this publication in new window or tab >>Tailoring visualization applications for tasks and users
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Exponential increases in available computational resources over the recent decades have fueled an information explosion in almost every scientific field. This has led to a societal change shifting from an information-poor research environment to an over-abundance of information. As many of these cases involve too much information to directly comprehend, visualization proves to be an effective tool to gain insight into these large datasets. While visualization has been used since the beginning of mankind, its importance is only increasing as the exponential information growth widens the difference between the amount of gathered data and the relatively constant human ability to ingest information. Visualization, as a methodology and tool of transforming complex data into an intuitive visual representation can leverage the combined computational resources and the human cognitive capabilities in order to mitigate this growing discrepancy.

A large portion of visualization research is, directly or indirectly, targets users in an application domain, such as medicine, biology, physics, or others. Applied research is aimed at the creation of visualization applications or systems that solve a specific problem within the domain. Combining prior research and applying it to a concrete problem enables the possibility to compare and determine the usability and usefulness of existing visualization techniques. These applications can only be effective when the domain experts are closely involved in the design process, leading to an iterative workflow that informs its form and function. These visualization solutions can be separated into three categories: Exploration, in which users perform an initial study of data, Analysis, in which an established technique is repeatedly applied to a large number of datasets, and Communication in which findings are published to a wider public audience.

This thesis presents five examples of application development in finite element modeling, medicine, urban search & rescue, and astronomy and astrophysics. For the finite element modeling, an exploration tool for simulations of stress tensors in a human heart uses a compression method to achieve interactive frame rates. In the medical domain, an analysis system aimed at guiding surgeons during Deep Brain Stimulation interventions fuses multiple modalities in order to improve their outcome. A second analysis application is targeted at the Urban Search & Rescue community supporting the extraction of injured victims and enabling a more sophisticated decision making strategy. For the astronomical domain, first, an exploration application enables the analysis of time-varying volumetric plasma simulations to improving these simulations and thus better predict space weather. A final system focusses on combining all three categories into a single application that enables the same tools to be used for Exploration, Analysis, and Communication, thus requiring the handling of large coordinate systems, and high-fidelity rendering of planetary surfaces and spacecraft operations.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 87
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1940
National Category
Other Computer and Information Science
Identifiers
urn:nbn:se:liu:diva-147975 (URN)10.3384/diss.diva-147975 (DOI)9789176852910 (ISBN)
Public defence
2018-06-15, Domteatern, Visualiseringscenter C, Kungsgatan 54, Campus Norrköping, Norrköping, 08:00 (English)
Opponent
Supervisors
Available from: 2018-05-21 Created: 2018-05-21 Last updated: 2018-05-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www-pequan.lip6.fr/~tierny/private/seminarPapers/bock_vis15.pdf

Authority records BETA

Bock, AlexanderYnnerman, AndersRopinski, Timo

Search in DiVA

By author/editor
Bock, AlexanderYnnerman, AndersRopinski, Timo
By organisation
Media and Information TechnologyFaculty of Science & EngineeringCenter for Medical Image Science and Visualization (CMIV)
Computer SciencesComputer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 170 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf