liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
MRI-based age prediction using hidden Markov models
MRI-based age prediction using hidden Markov models.
Bioinformatics Research Group, School of Engineering and Information Technology, The University of New South Wales, Canberra ACT 2600, Australia.ORCID iD: 0000-0002-4255-5130
2011 (English)In: Journal of Neuroscience Methods, ISSN 0165-0270, E-ISSN 1872-678X, Vol. 199, no 1, 140-145 p.Article in journal (Refereed) PublishedText
Abstract [en]

Cortical thinning and intracortical gray matter volume losses are widely observed in normal ageing, while the decreasing rate of the volume loss in subjects withneurodegenerative disorders such as Alzheimer's disease is reported to be faster than the average speed. Therefore, neurodegenerative disease is considered as accelerated ageing. Accurate detection of accelerated ageing based on the magnetic resonance imaging (MRI) of the brain is a relatively new direction of research in computational neuroscience as it has the potential to offer positive clinical outcome through early intervention. In order to capture the faster structural alterations in the brain with ageing, we propose in this paper a computational approach for modelling the MRI-based structure of the brain using the framework of hidden Markov models, which can be utilized for age prediction. Experiments were carried out on healthy subjects to validate its accuracy and its robustness. The results have shown its ability of predicting the brain age with an average normalized age-gap error of two to three years, which is superior to several recently developed methods for brain age prediction.

Place, publisher, year, edition, pages
2011. Vol. 199, no 1, 140-145 p.
Keyword [en]
MRI;Age prediction;Wavelet transforms;Vector quantization;Kullback–Leibler divergence
National Category
URN: urn:nbn:se:liu:diva-127869DOI: 10.1016/j.jneumeth.2011.04.022OAI: diva2:928876
Available from: 2016-05-17 Created: 2016-05-13 Last updated: 2016-06-02

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Pham, Tuan D
In the same journal
Journal of Neuroscience Methods

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 64 hits
ReferencesLink to record
Permanent link

Direct link