liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Analysis of optimal diesel-electric powertrain transients during a tip-in maneuver
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
2016 (English)Conference paper (Refereed)Text
Abstract [en]

Optimal transients of a hybrid powertrain are calculated with the aim to give a smooth and time efficient acceleration. It is shown that there is a trade-off between time and driveline oscillations where high oscillations can be avoided by slightly longer acceleration time and proper control of the electrical and diesel power sources. During a low oscillation acceleration, there is still the possibility to reduce the amount of total consumed electrical and fuel energy. This is investigated by calculation of optimal controls during acceleration for a fixed time while penalizing the usage of energy in a low oscillation acceleration. The balance between electrical and diesel energy usage during the acceleration is also investigated. The results show that to avoid extreme transients by optimal control, a multidimensional formulation of the objective function including different properties should be considered.

Place, publisher, year, edition, pages
IEEE , 2016.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-128779OAI: oai:DiVA.org:liu-128779DiVA: diva2:931759
Conference
The 9th Eurosim Congress on Modelling and Simulation, 12 - 16 September 2016, Oulu Finland
Available from: 2016-05-30 Created: 2016-05-30 Last updated: 2016-05-30Bibliographically approved
In thesis
1. Modeling and Optimal Control of Heavy-Duty Powertrains
Open this publication in new window or tab >>Modeling and Optimal Control of Heavy-Duty Powertrains
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Heavy duty powertrains are complex systems with components from various domains, different response times during transient operations and different efficient operating ranges. To ensure efficient transient operation of a powertrain, e.g. with low fuel consumption or short transient duration, it is important to come up with proper control strategies. In this dissertation, optimal control theory is used to calculate and analyze efficient heavy duty powertrain controls during transient operations in different applications. This is enabled by first developing control ready models, usable for multi-phase optimal control problem formulations, and then using numerical optimal control methods to calculate the optimal transients.

Optimal control analysis of a wheel loader operating in a repetitive loading cycle is the first studied application. Increasing fuel efficiency or reducing the operation time in such repetitive loading cycles sums up to large savings over longer periods of time. Load lifting and vehicle traction consume almost all of the power produced by a diesel engine during wheel loader operation. Physical models are developed for these subsystems where the dynamics are described by differential equations. The model parameters are tuned and fuel consumption estimation is validated against measured values from real wheel loader operation. The sensitivity of wheel loader trajectory with respect to constrains such as the angle at which the wheel loader reaches the unloading position is also analyzed. A time and fuel optimal trajectory map is calculated for various unloading positions. Moreover, the importance of simultaneous optimization of wheel loader trajectory and the component transients is shown via a side to side comparison between measured fuel consumption and trajectories versus optimal control results.

In another application, optimal control is used to calculate efficient gear shift controls for a heavy duty Automatic Transmission system. A modeling and optimal control framework is developed for a nine speed automatic transmission. Solving optimal control problems using the developed model, time and jerk efficient transient for simultaneous disengagement of off-going and engagement of in-coming shift actuators are obtained and the results are analyzed.

Optimal controls of a diesel-electric powertrain during a gear shift in an Automated Manual Transmission system are calculated and analyzed in another application of optimal control. The powertrain model is extended by including driveline backlash angle as an extra state in the system. This is enabled by implementation of smoothing techniques in order to describe backlash dynamics as a single continuous function during all gear shift phases.

Optimal controls are also calculated for a diesel-electric powertrain corresponding to a hybrid bus during a tip-in maneuver. It is shown that for optimal control analysis of complex powertrain systems, minimizing only one property such as time pushes the system transients into extreme operating conditions far from what is achievable in real applications. Multi-objective optimal control problem formulations are suggested in order to obtain a compromise between various objectives when analyzing such complex powertrain systems.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 27 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1771
Keyword
Powertrain, transmission system, optimal control, modeling for control
National Category
Control Engineering
Identifiers
urn:nbn:se:liu:diva-128002 (URN)10.3384/diss.diva-128002 (DOI)978-91-7685-748-9 (Print) (ISBN)
Public defence
2016-06-17, Visionen, Ingång 27, B huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2016-05-30 Created: 2016-05-16 Last updated: 2016-05-31Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Nezhadali, VaheedEriksson, Lars
By organisation
Vehicular SystemsFaculty of Science & Engineering
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 43 hits
ReferencesLink to record
Permanent link

Direct link