The mitochondrion is a membrane-bound organelle found in most eukaryotic cells. Mitochondria are considered as the powerhouse of the cell because they function as the platform for generating the production of chemical energy. The visual information of mitochondria revealed by the recent advanced technology in nanoimaging opens doors to life-science researchers to gain insights into its spatial structure and its spatial distribution within the cell. In order to simulate and model mitochondria using a large amount of images, the first task in image processing is the automated detection of this organelle. This paper introduces a nonstationary indicator kriging model, which can model the spatial uncertainty in an image, for feature extraction. This feature can be effectively applied for the detection of mitochondria.