A study of the nucleation and crystal structure evolution at the early stages of the growth of sp(2)-BN thin films on 6H-SiC and alpha-Al2O3 substrates is presented. The growth is performed at low pressure and high temperature in a hot wall CVD reactor, using ammonia and triethylboron as precursors, and H-2 as carrier gas. From high-resolution transmission electron microscopy and X-ray thin film diffraction measurements we observe that polytype pure rhombohedral BN (r-BN) is obtained on 6H-SiC substrates. On alpha-Al2O3 an AlN buffer obtained by nitridation is needed to promote the growth of hexagonal BN (h-BN) to a thickness of around 4 nm followed by a transition to r-BN growth. In addition, when r-BN is obtained, triangular features show up in plan-view scanning electron microscopy which are not seen on thin h-BN layers. The formation of BN after already one minute of growth is confirmed by X-ray photoelectron spectroscopy. (C) 2016 The Japan Society of Applied Physics