liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermoelectric Polymers and their Elastic Aerogels
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-2904-7238
KTH Royal Institute Technology, Sweden.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2016 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, no 22, p. 4556-4562Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2016. Vol. 28, no 22, p. 4556-4562
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-129660DOI: 10.1002/adma.201505364ISI: 000377123500029PubMedID: 26836440OAI: oai:DiVA.org:liu-129660DiVA, id: diva2:943249
Note

Funding Agencies|European Research Council (ERC) [307596]; Swedish Foundation for Strategic Research; Knut and Alice Wallenberg Foundation; Swedish Energy Agency; Advanced Functional Materials Center at Linkoping University; Research Institute of Sweden (RISE)

Available from: 2016-06-27 Created: 2016-06-23 Last updated: 2018-09-07
In thesis
1. Flexible and Cellulose-based Organic Electronics
Open this publication in new window or tab >>Flexible and Cellulose-based Organic Electronics
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organic electronics is the study of organic materials with electronic functionality and the applications of such materials. In the 1970s, the discovery that polymers can be made electrically conductive led to an explosion within this field which has continued to grow year by year. One of the attractive features of organic electronic materials is their inherent mechanical flexibility, which has led to the development of numerous flexible electronics technologies such as organic light emitting diodes and solar cells on flexible substrates. The possibility to produce electronics on flexible substrates like plastic or paper has also had a large impact on the field of printed, electronics where inks with electronic functionality are used for large area fabrication of electronic devices using classical printing methods, such as screen printing, inkjet printing and flexography.

Recently, there has been a growing interest in the use of cellulose in organic and printed electronics, not only as a paper substrate but also as a component in composite materials where the cellulose provides mechanical strength and favorable 3D-microstructures. Nanofibrillated cellulose is composed of cellulose fibers with high aspect-ratio and diameters in the nanometer range. Due to its remarkable mechanical strength, large area-to-volume ratio, optical transparency and solution processability it has been widely used as a scaffold or binder for electronically active materials in applications such as batteries, supercapacitors and optoelectronics.

The focus of this thesis is on flexible devices based on conductive polymers and can be divided into two parts: (1) Composite materials of nanofibrillated cellulose and the conductive polymer PEDOT:PSS and (2) patterning of vapor phase polymerized conductive polymers. In the first part, it is demonstrated how the combination of cellulose and conductive polymers can be used to make electronic materials of various form factors and functionality. Thick, freestanding and flexible “papers” are used to realize electrochemical devices such as transistors and supercapacitors while lightweight, porous and elastic aerogels are used for sensor applications. The second focus of the thesis is on a novel method of patterning conductive polymers produced by vapor phase polymerization using UV-light. This method is used to realize flexible electrochromic smart windows with high-resolution images and tunable optical contrast.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. p. 73
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1845
Keywords
Organic electronics, conductive polymers, nanocellulose, nanofibrillated cellulose, composite materials, paper electronics, flexible electronics
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-136518 (URN)10.3384/diss.diva-1089149 (DOI)978-91-7685-542-3 (ISBN)
Public defence
2017-05-19, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation, KAW 2011.0050Swedish Foundation for Strategic Research , GMT14-0058
Available from: 2017-05-04 Created: 2017-04-18 Last updated: 2018-02-15Bibliographically approved

Open Access in DiVA

fulltext(1162 kB)5 downloads
File information
File name FULLTEXT01.pdfFile size 1162 kBChecksum SHA-512
97199afd03b218e8cf3af09c645a5359703640525387c7eb5d27b1e6e51b38380f66109141eac229ceb29ba8812817dcee6a37aed858fcb3b53f9d6e71b4a7bd
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Ullah Khan, ZiaEdberg, JesperGabrielsson, RogerEngquist, IsakBerggren, MagnusCrispin, Xavier

Search in DiVA

By author/editor
Ullah Khan, ZiaEdberg, JesperGabrielsson, RogerEngquist, IsakBerggren, MagnusCrispin, Xavier
By organisation
Physics and ElectronicsFaculty of Science & Engineering
In the same journal
Advanced Materials
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 5 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf