liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Systems Analysis for Eco-Industrial Development: Applied on Cement and Biogas Production Systems
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering. (Industrial Symbiosis)ORCID iD: 0000-0002-6736-6125
2016 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Systemanalys för ekoindustriell utveckling : tillämpadpå cement och biogas produktion (Swedish)
Abstract [en]

Our industrial systems are not sustainable—a major challenge which demands several types of responses. Eco-industrial development can be seen as such a response, with the goal to establish industrial systems that are both ecological and economical. Industrial Ecology is another closely related response. It is based on the idea that natural systems can be used to understand how to design sustainable industrial systems, for example, by shifting from linear industrial processes to cyclic systems, where waste streams can be avoided or minimized through utilization as raw materials for other processes. In this thesis, the possible contributions of industrial ecology/symbiosis to eco-industrial development are investigated through the use of systems analysis approaches. Two systems analysis methods are used: life-cycle assessment and multi-criteria analysis. These methods are applied on two types of industrial systems: cement and biogas.

Cement is among the most used materials in the world with extensive resource consumption and environmental impact, manifested for example by the high levels of CO2 emissions. Multi-criteria analysis was used to identify, classify, and assess different measures to improve the climate performance of cement production, while life-cycle assessment was employed to quantify the CO2 emissions. Combined, multi-criteria analysis and life-cycle assessment were used for an integrated assessment of different eco-industrial development paths. Most of the feasible and resource-efficient improvement measures were related to utilization of secondary resources, for example minimizing the clinker content of the cement by replacing it with by-products from steel and iron manufacturing, or using refuse-derived fuels. Effective utilization of these secondary raw materials and fuels can be achieved through industrial symbiosis.

Biogas is viewed as part of a larger transition towards a bio-based economy where resources—bio-materials and bio-energy—are used in a cascading, circular, and renewable manner. Multi-criteria analysis was used to assess the feasibility and resource efficiency of using different types of biomass as feedstock for biogas and biofertilizer production. In addition to aspects such as renewable energy and nutrient recycling, cost efficiency, institutional conditions, environmental performance, the potential per unit, and the overall potential were considered. In another study, life-cycle assessment was used to analyze the environmental performance of biogas production from source-sorted food waste using a dry digestion process. The study showed that the performance of this dry process is superior to most of the existing wet biogas processes in Sweden. The critical sources of uncertainty and their impact on the overall performance of the system were analyzed. Factors influencing methane production, as well as processes related to soil after the digestate is applied as biofertilizer on land, have the greatest influence on the performance of these systems.

For both cement and biogas systems industrial symbiosis involving collaboration and better utilization of local/regional secondary resources, can result in resource-efficient eco-industrial development. Life-cycle assessment and multi-criteria approaches can serve as two complementary methods for investigating the feasibility, potential, and resource efficiency of different development paths. These approaches can provide input into decision-making processes and lead to more informed decisions.

Abstract [sv]

Våra industriella system är inte hållbara—en stor utmaning som kräver olika typer av åtgärder. Ekoindustriell utveckling kan betraktas som en sådan åtgärd, eller respons, med avsikten att etablera industriella system som både är sunda ekonomiskt och ekologiskt. Industriell ekologi är en annan och närbesläktad respons, baserad på idén att naturliga system kan användas som förebilder, för att förstå hur hållbara industriella system kan designas. Det kan tillexempel handla om ett skifte från linjära industriella processer till cykliska, där avfallsströmmar kan undvikas eller minimeras genom att de omvandlas till råvaror för andra processer. I den här avhandlingen undersöks om och hur industriell ekologi/symbios kan bidra till fortsatt ekoindustriell utveckling, genom användning av systemanalysmetoder. Två typer av industriella system står i fokus: cement- och biogasproduktion. Vidare används två typer av miljösystemanalytiska metoder: livscykelanalys och multikriterieanalys.

Cement är ett av världens mest använda material och är förknippat med omfattande resursanvändning och stor miljöpåverkan, exempelvis i form av höga utsläpp av koldioxid. Multikriterieanalys användes för att identifiera, klassificera och bedöma ett flertal förbättringsåtgärder som kan ge bättre klimatprestanda. Livscykelanalys användes för att kvantifiera utsläppen av koldioxid. Kombinerade användes multikriterieanalys och livscykelanalys för en form av integrerad bedömning av olika ekoindustriella utvecklingsvägar för cementindustrin. De flesta förbättringsåtgärderna som bedömdes vara genförbara och resurseffektiva var kopplade till användning av sekundära resurser, exempelvis i form av att mängden cementklinker minimerades och ersattes av restprodukter från järn- och stålindustrin samt att  avfall användes som bränsle. Effektiv användning av den här typen av sekundära material kan realiseras genom industriell symbios.

Biogas ses som en del i en större omställning i riktning mot en biobaserad ekonomi, där biomaterial och bioenergi används i kaskadsystem —förnyelsebart och cirkulärt. Multikriterieanalys tillämpades för att utvärdera genomförbarhet och resurseffektivitet för olika substrat till biogas- och biogödselproduktion. Aspekter avseende förnyelsebar energi och näringscirkulering beaktades, även kostnadseffektivitet, sociala och institutionella förutsättningar, miljöprestanda, potentialen per enhet samt potentialen totalt. I en annan studie användes livscykelanalys för att studera miljöprestandan för biogasproduktion baserad på utsorterat matavfall i en torr rötningsprocess. Studien visade att den torra processen hade bättre eller likvärdig prestanda jämfört med många av de våta processer som används för motsvarande ändamål i Sverige. Kritiska källor till osäkerheter och deraspåverkan på den totala prestandan för systemet analyserades. Störst betydelse hade de faktorer som påverkar metanproduktionen samt processer i jorden/marken efter att digestatet lagts ut som biogödsel.

Både för cement och biogassystem kan industriell symbios, som involverar samverkan mellan lokala/regionala aktörer och användning av sekundära resurser, leda till resurseffektiv ekoindustriell utveckling. Livscykelanalys och multikriterieanalys kan användas som två kompletterade metodologiska approacher för att undersöka genomförbarhet, potential och resurseffektivitet för olika utvecklingsvägar. Dessa metoder kan bidra till beslutsfattandet och stödja mer välgrundade beslut.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. , 125 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1780
Keyword [en]
industrial ecology, eco-industrial development, multi-criteria analysis, life-cycle assessment, MCA, LCA, uncertainty management, systems analysis, industrial symbiosis, cement, biogas, cement production, biogas solutions
National Category
Environmental Management
Identifiers
URN: urn:nbn:se:liu:diva-130782ISBN: 9789176857083 (Print)OAI: oai:DiVA.org:liu-130782DiVA: diva2:954764
Public defence
2016-09-09, ACAS, A-Building, Campus Valla, Linköping University, Linköping, 14:22 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency
Available from: 2016-08-23 Created: 2016-08-23 Last updated: 2016-08-23Bibliographically approved
List of papers
1. Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry
Open this publication in new window or tab >>Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry
Show others...
2015 (English)In: Journal of Cleaner Production, ISSN 0959-6526, Vol. 98, 272-281 p.Article in journal (Refereed) Published
Abstract [en]

Cement is a vital and commonly used construction material that requires large amounts of resources and the manufacture of which causes significant environmental impact. However, there are many different types of cement products, roughly ranging from traditional products with rather linear resource flows to more synergistic alternatives where industrial byproducts are utilized to a large extent. Life Cycle Assessment (LCA) studies indicate the synergistic products are favorable from an environmental perspective.

In co-operation with the global cement producing company CEMEX a research project has been carried out to contribute to a better understanding of the CO2 performance of different ways of producing cement, and different cement products. The focus has been on Cluster West, which is a cement production cluster consisting of three plants in Germany.

This paper is the first in a series of three, all of which are included in this special issue. It has two main aims. The first is to carry out an attributional LCA and compare three different cement products produced in both linear and synergistic production setups. This has been done for cradle to gate, focusing on CO2-eq emissions for Cluster West. The second aim of this part is to develop and test a simplified LCA model for this production cluster, with the intention to be able to compare different versions of the production system based on the information of a few parameters.

The attributional LCA showed that cement products that contain a large proportion of byproducts, in this case, ground granulated blast furnace slag from the iron and steel industry, had the lowest unit emissions of CO2-eq. The difference between the lowest emission product (CEM III/B) and the highest (CEM I) was about 66% per tonne. A simplified LCA model based on six key performance indicators, instead of approximately 50 parameters for the attributional LCA, was established. It showed that Cluster West currently emits about 45% less CO2-eq per tonne of average product compared to 1997. The simplified LCA model can be used effectively to model future changes of both plants and products (which is further discussed in part II and part III).

Place, publisher, year, edition, pages
Elsevier, 2015
Keyword
Cement production, Life Cycle Assessment, CO2 emissions, Modeling Performance indicators
National Category
Environmental Management
Identifiers
urn:nbn:se:liu:diva-105939 (URN)10.1016/j.jclepro.2014.01.083 (DOI)000356194300028 ()
Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2016-08-24Bibliographically approved
2. Improving the CO2 performance of cement, part II: Framework for assessing CO2 improvement measures in cement industry
Open this publication in new window or tab >>Improving the CO2 performance of cement, part II: Framework for assessing CO2 improvement measures in cement industry
Show others...
2015 (English)In: Journal of Cleaner Production, ISSN 0959-6526, Vol. 98, 282-291 p.Article in journal (Refereed) Published
Abstract [en]

Cement production is among the largest anthropogenic sources of carbon dioxide (CO2) and there is considerable pressure on the cement industry to reduce these emissions. In the effort to reduce CO2 emissions, there is a need for methods to systematically identify, classify and assess different improvement measures, to increase the knowledge about different options and prioritize between them. For this purpose a framework for assessment has been developed, inspired by common approaches within the fields of environmental systems analysis and industrial symbiosis. The aim is to apply a broad systems perspective and through the use of multiple criteria related to technologies and organization strategies facilitate informed decision-making regarding different CO2 performance measures in the cement industry.

The integrated assessment framework consists of two parts: a generic and a case-specific part. It is applied to a cement production cluster in Germany called Cluster West, consisting of three cement plants owned by CEMEX. The framework can be used in different ways. It can be used as a tool to perform literature reviews and categorize the state-of-the-art knowledge about options to improve the CO2 performance. It can also be used to assess options for the cement industry in general as well as for individual plants.

This paper describes the assessment framework, the ideas behind it, its components and the process of carrying out the assessment. The first part provides a structured overview of the options for improvement for the cement industry in general, while the second part is a case-specific application for Cluster West, providing information about the feasibility for different categories of measures that can reduce the CO2 emissions. The overall impression from the project is that the framework was successfully established and, when applied, facilitated strategic discussions and decision-making. Such frameworks can be utilized to systematically assess hundreds of different measures and identify the ones most feasible and applicable for implementation, within the cement industry but also possibly in other sectors. The results demonstrated that even in a relatively synergistic and efficient production system, like Cluster West, there are opportunities for improvement, especially if options beyond “production efficiency” are considered.

Place, publisher, year, edition, pages
Elsevier, 2015
Keyword
industrial ecology, cement, CO2 emissions, industrial symbiosis, environmental assessment framework, integrated assessment
National Category
Environmental Management
Identifiers
urn:nbn:se:liu:diva-105940 (URN)10.1016/j.jclepro.2014.01.103 (DOI)000356194300029 ()
Note

On the day of the defence date the status of this article was Manuscript.

Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2016-08-24Bibliographically approved
3. Improving the CO2 performance of cement, part III: The relevance of industrial symbiosis and how to measure its impact
Open this publication in new window or tab >>Improving the CO2 performance of cement, part III: The relevance of industrial symbiosis and how to measure its impact
Show others...
2015 (English)In: Journal of Cleaner Production, ISSN 0959-6526, Vol. 98, 145-155 p.Article in journal (Refereed) Published
Abstract [en]

Cement production contributes to extensive CO2 emissions. However, the climate impact can vary significantly between different production systems and different types of cement products. The market is dominated by ordinary Portland cement, which is based on primary raw materials and commonly associated with combustion of vast amounts of fossil fuels. Therefore, the production of Portland cement can be described as a rather linear process. But there are alternative options, for example, involving large amounts of industrial byproducts and renewable energy which are more cyclic and thus can be characterized as relatively “synergistic”.

The main purpose of this article is to study how relevant the leading ideas of industrial symbiosis are for the cement industry based on a quantitative comparison of the CO2 emissions from different cement production systems and products, both existing and hypothetical. This has been done by studying a group of three cement plants in Germany, denoted as ClusterWest, and the production of cement clinker and three selected cement products. Based on this analysis and literature, it is discussed to what extent industrial symbiosis options can lead to reduced CO2 emissions, for Cluster West and the cement industry in general.

Utilizing a simplified LCA model (“cradle to gate”), it was shown that the CO2 emissions from Cluster West declined by 45% over the period 1997e2009, per tonne of average cement. This was mainly due to a large share of blended cement, i.e., incorporation of byproducts from local industries as supplementary cementitious materials. For producers of Portland cement to radically reduce the climate impact it is necessary to engage with new actors and find fruitful cooperation regarding byproducts, renewable energy and waste heat. Such a development is very much in line with the key ideas of industrial ecology and industrial symbiosis, meaning that it appears highly relevant for the cement industry to move further in this direction. From a climate perspective, it is essential that actors influencing the cement market acknowledge the big difference between different types of cement, where an enlarged share of blended cement products (substituting clinker with byproducts such as slag and fly ash) offers a great scope for future reduction of CO2 emissions.

Place, publisher, year, edition, pages
Elsevier, 2015
Keyword
Cement, CO2 emissions, Life cycle assessment (LCA), Industrial symbiosis Granulated Blast Furnace Slag (GBFS)
National Category
Environmental Management
Identifiers
urn:nbn:se:liu:diva-105941 (URN)10.1016/j.jclepro.2014.01.086 (DOI)000356194300015 ()
Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2016-08-24Bibliographically approved
4. Assessment of Feedstocks for Biogas Production, Part I: A Multi-Criteria Approach
Open this publication in new window or tab >>Assessment of Feedstocks for Biogas Production, Part I: A Multi-Criteria Approach
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Biogas production is essentially based on organic materials and biological processes; hence it can contribute to the transition toward a biobased economy. In comparison with other biofuels, biogas is more flexible and can be produced from many different types of feedstock, including biomass containing various shares of carbohydrates, lipids and, both from primary and secondary raw materials. However, a significantly expanded biogas production is dependent on good business conditions, in turn related to societal acceptance and support. There are many factors that can make a biogas solution more or less suitable for both producers and the broader society. Among the many influencing factors, the choice of feedstocks (biomass) for producing biogas and biofertilizer is of strategic importance. But, to assess the suitability is complicated, because it is linked to many different challenges such as cost, energy balance, environmental impacts, institutional conditions, available technologies, geographical conditions, alternative and competing interest, and so on. Suitability includes aspects related to feasibility for implementation, potential for renewable energy and nutrient recycling, and resource efficiency. In this article, a multi-criteria framework is developed for assessing the suitability of producing biogas from different types of biomass (feedstocks). This framework allows learning about the limitations and opportunities for biogas development and more informed decision making, both in industry and policy. Existing, or forthcoming, biogas and biofertilizer producers who are considering altering or expanding their production systems can benefit from a better understanding of different choices of feedstock that are or can be (potentially) at their disposal; thus, identify hotspots, weak points, and possible candidates for implementation in future. The framework is reasonably comprehensive, yet it is simple enough to be used by practitioners. It could help to minimize the risk of sub-optimization or neglecting important risks or opportunities. This article, the first of two associated articles, is focused on the framework itself. The framework is applied to assess the suitability of producing biogas from “stickleback”, which is a non-edible fish in the Baltic Sea region. In the companion article (Part II), four other feedstocks are assessed, namely ley crops, straw, farmed blue mussels, and source-sorted food waste.

This research is performed within the Biogas Research Center (BRC), which is a transdisciplinary center of excellence with the overall goal of promoting resource-efficient biogas solutions in Sweden. The BRC is funded by the Energy Agency of Sweden, Linköping University, and more than 20 partners from academia, industry, municipalities and other several public and private organizations.

Keyword
multi-criteria analysis, biogas, biofertilizer, biomass, strategic decision-making, resource efficiency
National Category
Environmental Management
Identifiers
urn:nbn:se:liu:diva-130775 (URN)
Projects
BRC-RP2 (system projects, multi-criteria analysis of biogas solutions)
Funder
Swedish Energy AgencyLinköpings universitet
Available from: 2016-08-23 Created: 2016-08-23 Last updated: 2016-08-23Bibliographically approved
5. Assessment of Feedstocks for Biogas Production, Part II: Results for Strategic Decision Making
Open this publication in new window or tab >>Assessment of Feedstocks for Biogas Production, Part II: Results for Strategic Decision Making
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Biogas production is essentially based on organic materials and biological processes; hence it can contribute to the transition toward a biobased economy. Biogas is a biofuel that can contribute to a more renewable and local energy system. In comparison with other biofuels, biogas is more flexible and can be produced from many different types of feedstock, including biomass containing various shares of carbohydrates, lipids and, both from primary and secondary raw materials. However, a significantly expanded biogas production is dependent on good business conditions, in turn related to societal acceptance and support. There are many factors that can make a biogas solution more or less suitable for both producers and the broader society. Among the many influencing factors, the choice of feedstocks (biomass) for producing biogas and biofertilizer is of strategic importance. But, to assess the suitability is complicated, because it is linked to many different challenges such as cost, energy balance, environmental impacts, institutional conditions, available technologies, geographical conditions, alternative and competing interest, and so on. Suitability includes aspects related to feasibility for implementation, potential for renewable energy and nutrient recycling, and resource efficiency. In this article, a multi-criteria framework, which is proposed in a companion article (Part II), is used to assess the suitability of four types of feedstocks for producing biogas (considering Swedish conditions). The assessed feedstocks are ley crops, straw, farmed blue mussels, and source-sorted food waste. The results have synthesized and structured a lot of information, which facilitates considerably for those that want an overview and to be able to review several different areas simultaneously. Among the assessed feedstocks, biogas production from household food waste and ley is the most straightforward. For straw and farmed blue mussels, there are more obstacles to overcome including some significant barriers. For all feedstock there are challenges related to the institutional conditions. The assessment contributes to the knowledge about sustainable use of these feedstocks, and the limitations and opportunities for biogas development. It supports more informed decision making, both in industry and policy. Existing, or forthcoming, biogas and biofertilizer producers who are considering altering or expanding their production systems can benefit from a better understanding of different choices of feedstock that are or can be (potentially) at their disposal; thus, identify hotspots, weak points, and possible candidates for implementation in future. This research is performed within the Biogas Research Center (BRC), which is a transdisciplinary center of excellence with the overall goal of promoting resource-efficient biogas solutions in Sweden. The BRC is funded by the Energy Agency of Sweden, Linköping University, and more than 20 partners from academia, industry, municipalities and other several public and private organizations.

Keyword
multi-criteria analysis, biogas, ley crops, straw, blue mussel, food waste
National Category
Environmental Management
Identifiers
urn:nbn:se:liu:diva-130776 (URN)
Funder
Swedish Energy AgencyLinköpings universitet
Available from: 2016-08-23 Created: 2016-08-23 Last updated: 2016-08-23Bibliographically approved
6. Life-Cycle Assessment and Uncertainty Analysis of Producing Biogas from Food Waste: A Case-Study of the First Dry-Process Biogas Plant in Sweden
Open this publication in new window or tab >>Life-Cycle Assessment and Uncertainty Analysis of Producing Biogas from Food Waste: A Case-Study of the First Dry-Process Biogas Plant in Sweden
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Anaerobic digestion of source-sorted food waste is increasing in Sweden. Traditionally, all large-scale co-digestion plants in Sweden, including the ones which digest food waste, are based on wet process. In this article life-cycle assessment (LCA) is used in order to investigate the environmental performance of the first dry-process biogas plant based on source-sorted municipal food waste in Sweden. The environmental performance of this plant is compared with existing typical plants which are based on wet process. Biogas production systems are complex, and there are knowledge gaps and large uncertainties regarding some of the processes. Most existing biogas LCA studies do not take into account these uncertainties and use single values in their life-cycle inventories. In this study uncertainty propagation in LCA of biogas production system is performed and the results are discussed in order to gain system-level insights on the main factors that influence the performance of producing biogas from food waste and the key uncertainties. An attributional process-based LCA model is used to study the global warming potential, eutrophication potential, acidification potential, and non-renewable cumulative energy demand of producing biogas from food waste. A reference case is used which is based on an actual biogas plant in Sweden which uses dry process for treating source-sorted food waste. For the wet process, this case is altered using Swedish literature data on wet digestion systems. For uncertainty management, a combination of approaches, including possibility/fuzzy intervals and stochastic distributions are used. Possibility/fuzzy intervals are used for data collection, but they are translated into probability distributions and Monte Carlo simulation. A simple method for quantifying the uncertainties of the LCA results is used, so the critical uncertainties can be assessed, compared, and discussed. In addition, several key performance indicators were introduced to complement the LCA results.The results of the LCA and KPIs show that using dry process for processing of food waste has a better or comparable environmental performance compared to most existing (wet-process) biogas plants in Sweden. When uncertainties are considered, two systems are more comparable. Regardless of the choice of wet or dry process for treatment of food waste, there are large uncertainties in the non-technical parts of the system which are less dependent to the technical choices or scenario assumptions. Decision-makers who are interested in using biogas systems for treatment of source sorted food waste, should take dry process into consideration. From an energy and environmental perspective, dry process can have good or better performance compared to many existing plants which are based on the wet process. This is mainly due to simpler pretreatment and digestate management. Taking into account the uncertainties (knowledge gaps, and variabilities) in assessing and comparing the performance of biogas production from food waste, provides a more realistic picture of their strengths and weaknesses. Since some of the impacts (and benefits such as carbon sequestration) of using food waste for biogas production and its digestate as biofertilizer lies in areas with high uncertainties, communication of these benefits to wider socio-political actors can play an important role for the development of biogas from food waste in Sweden, because many of the benefits of biogas solutions are not visible when analyzed by LCA approaches that do not take into account these uncertainties.

Keyword
life-cycle assessment, key performance indicators, uncertainty analysis, food waste, biogas, dry process
National Category
Environmental Management
Identifiers
urn:nbn:se:liu:diva-130774 (URN)
Projects
BRC-RP3 (system quantification projects)-Biogas from Food waste
Funder
Swedish Energy AgencyLinköpings universitet
Available from: 2016-08-23 Created: 2016-08-23 Last updated: 2016-08-23Bibliographically approved

Open Access in DiVA

omslag(175 kB)12 downloads
File information
File name COVER01.pdfFile size 175 kBChecksum SHA-512
fde9157ce195bf9b7144d9581c9459efca2068022bf667534e5b8d7ec296207c8f02ed252678690cadfc9d8604437b9794d49aad4abaed7b56dc409a05f96a10
Type coverMimetype application/pdf

Search in DiVA

By author/editor
Feiz, Roozbeh
By organisation
Environmental Technology and ManagementFaculty of Science & Engineering
Environmental Management

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 454 hits
ReferencesLink to record
Permanent link

Direct link