liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-temperature nanoindentation of epitaxial ZrB2 thin films
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-3277-1945
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Hysitron Inc., Minneapolis, Minnesota, USA.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2016 (English)In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 124, p. 117-120Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We use in-situ heated nanoindentation to investigate the high-temperature nanomechanical properties of epitaxial and textured ZrB2 films deposited by magnetron sputtering. Epitaxial films deposited on 4H-SiC(0001) show a hardness decrease from 47 GPa at room temperature to 33 GPa at 600 °C, while the reduced elastic modulus does not change significantly. High resolution electron microscopy (HRTEM) with selected area electron diffraction of the indented area in a 0001-textured film reveals a retained continuous ZrB2 film and no sign of crystalline phase transformation, despite massive deformation of the Si substrate. HRTEM analysis supports the high elastic recovery of 96% in the films.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 124, p. 117-120
Keywords [en]
Sputtering; Borides; Ceramic thin film; Nanoindentation; Transmission electron microscopy
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-130917DOI: 10.1016/j.scriptamat.2016.06.033ISI: 000383294200027OAI: oai:DiVA.org:liu-130917DiVA, id: diva2:956678
Note

Funding agencies: Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]; Swedish Research Council (VR) [621-2010-3921]

Available from: 2016-08-31 Created: 2016-08-31 Last updated: 2017-11-21Bibliographically approved
In thesis
1. ZrB2 Thin Films: Growth and Characterization
Open this publication in new window or tab >>ZrB2 Thin Films: Growth and Characterization
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Zirconium diboride, ZrB2, is a ceramic material with bulk properties such as high melting point (3245 °C), high hardness (23 GPa), and low resistivity (~8 μΩcm). Thin film growth of ZrB2 using physical vapor deposition has suffered from problems with films deviating from stoichiometry and with high levels of contaminants, especially high oxygen content. The homogeneity range of ZrB2 is very narrow, and consequently it is vital to achieve the correct stoichiometry to grow films with high crystalline order.

This thesis describes a direct current magnetron sputtering process to grow stoichiometric ZrB2 thin films with a low degree of impurities. Growth of epitaxial ZrB2 films was achieved on 4H-SiC(0001), Si(111) and Al2O3(0001) substrates. The effect of deposition temperature and power applied on the sputtering target was investigated and showed that high power density (8.77 Wcm-2) and high temperature (900 °C) resulted in films with the best composition and the highest crystal quality. ZrB2 films on GaN(0001) templates exhibit an amorphous layer at the film-substrate interface and the resulting films are either polycrystalline or textured.

Resistivity measurements showed that the ZrB2 thin films exhibit typical resistivity values of ~100-250 μΩcm and that the resistivity decreased with increasing deposition temperature.

Nanoindentation was applied to assess the mechanical properties of the films. The epitaxial ZrB2 films exhibit high elastic recovery and a hardness of ~45-50 GPa, twice as high as the literature bulk value. In addition, evaluation of the mechanical properties was performed at high temperatures of up to 600 °C and showed that the epitaxial films retained a higher hardness, compared to textured ZrB2 films and bulk, also at these temperatures.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. p. 67
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1744
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-128614 (URN)10.3384/diss.diva-128614 (DOI)978-91-7685-833-2 (ISBN)
Public defence
2016-06-17, Planck, Fysikhuset, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2016-05-25 Created: 2016-05-25 Last updated: 2019-10-29Bibliographically approved

Open Access in DiVA

fulltext(444 kB)359 downloads
File information
File name FULLTEXT01.pdfFile size 444 kBChecksum SHA-512
360fd0524203e45ba236dc9935c6069a0dd0a3eab11aefdbf6f73a2302555d7d0434af6be5a950b38ce6eed8fa5c6504d1036f795428502cc56f9842622b2fa8
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Broitman, EstebanTengdelius, LinaLu, JunHultman, LarsHögberg, Hans

Search in DiVA

By author/editor
Broitman, EstebanTengdelius, LinaLu, JunHultman, LarsHögberg, Hans
By organisation
Thin Film PhysicsFaculty of Science & Engineering
In the same journal
Scripta Materialia
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 359 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 748 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf