liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis
Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping.
Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping.ORCID iD: 0000-0001-8722-9155
Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
Show others and affiliations
2016 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, p. 1-15, article id 32137Article in journal (Refereed) Published
Abstract [en]

Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea.

Place, publisher, year, edition, pages
Nature Publishing Group, 2016. Vol. 6, p. 1-15, article id 32137
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:liu:diva-131501DOI: 10.1038/srep32137ISI: 000381967600002PubMedID: 27561355OAI: oai:DiVA.org:liu-131501DiVA, id: diva2:974466
Note

Funding Agencies|Bayer HealthCare AB, Solna, Sweden; Swedish Research Council [2012-2472]

Available from: 2016-09-26 Created: 2016-09-23 Last updated: 2018-05-21Bibliographically approved
In thesis
1. Regulation of inflammation and angiogenesis in the cornea
Open this publication in new window or tab >>Regulation of inflammation and angiogenesis in the cornea
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Inflammation and angiogenesis, the growth of new blood vessels from pre-existing ones, are involved in tumor growth, ocular diseases and wound healing. In ocular angiogenesis, new pathological vessels grow into a specific eye tissue, leak fluid, and disrupt vision. The development of safe and effective therapies for ocular angiogenesis is of great importance for preventing blindness, given that current treatments have limited efficacy or are associated with undesirable side effects. The search for alternative treatment targets requires a deeper understanding of inflammation and how it can lead to angiogenesis in the eye in pathologic situations. This thesis provides new insights into the regulation of inflammation and angiogenesis, particularly at the gene expression and phenotypic levels, in different situations characterized by angiogenesis of the cornea, often called corneal neovascularization. For instance, specific genes and pathways are either endogenously activated or suppressed during active inflammation, wound healing, and during resolution of inflammation and angiogenesis, serving as potential targets to modulate the inflammatory and angiogenic response. In addition, as part of the healing response to restore corneal transparency, inflammation and angiogenesis subside with time in the cornea. In this context, LXR/RXR signaling was found to be activated in a time-dependent manner, to potentially regulate resolution of inflammation and angiogenesis. During regression of new angiogenic capillaries, ghost vessels and empty basement membrane sleeves are formed, which can persist in the cornea for a long time. Here, ghost vessels were found to facilitate subsequent revascularization of the cornea, while empty basement membrane sleeves did not revascularize. The revascularization response observed here was characterised by vasodilation, increased inflammatory cell infiltration and by sprouting at the front of the reperfused vessels. Importantly, reactive oxygen species and nitrous oxide signaling among other pro-inflammatory pathways were activated, and at the same time anti-inflammatory LXR/RXR signaling was inhibited. The interplay between activation and inhibition of these pathways highlights potential mechanisms that regulate corneal revascularization. When treating corneal neovascularization clinically, corticosteroids are in widespread use due to their effectiveness. To minimize the many undesirable side effects associated with corticosteroid use, however, identifying new and more selective agents is of great importance. Here, it was observed that corticosteroids not only suppressed pro-inflammatory chemokines and cytokines, but also activated the classical complement pathway. Classical complement may represent a candidate for further selective therapeutic manipulation to investigate its effect on treatment of corneal neovascularization.

In summary, this thesis identifies genes, pathways, and phenotypic responses involved in sprouting and remodeling of corneal capillaries, highlights novel pathways and factors that may regulate inflammation and angiogenesis in the cornea, and provides insights into regulation of capillary regression and reactivation. Further investigation of these regulatory mechanisms may offer alternative and effective treatment targets for the treatment of corneal inflammation and angiogenesis.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 55
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1625
National Category
Ophthalmology Rheumatology and Autoimmunity
Identifiers
urn:nbn:se:liu:diva-147979 (URN)10.3384/diss.diva-147979 (DOI)9789176852842 (ISBN)
Public defence
2018-06-01, Nils-Holger salen, Campus US, Linköping, 13:06 (English)
Opponent
Supervisors
Available from: 2018-05-21 Created: 2018-05-21 Last updated: 2018-05-21Bibliographically approved

Open Access in DiVA

fulltext(2908 kB)45 downloads
File information
File name FULLTEXT01.pdfFile size 2908 kBChecksum SHA-512
bd96ca97d3d2d5de4e4d5e485e5ad864e0ce791a77b78c959a0e74b89586259550ddfb8db786c18a99d7f1211f9e36c960f8d6b9a30b8535e0d24b0907be58f4
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Mukwaya, AnthonyPeebo, BeatriceXeroudaki, MariaAli, ZaheerLennikov, AntonJensen, LasseLagali, Neil
By organisation
Division of Neuro and Inflammation ScienceFaculty of Medicine and Health SciencesDepartment of Ophthalmology in LinköpingDivision of Cardiovascular MedicineDepartment of Clinical Pharmacology
In the same journal
Scientific Reports
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 45 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 281 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf