Carbide signatures are ubiquitous in the surface analyses of industrially sputter-deposited transition metal nitride thin films grown with carbon-less source materials in typical high-vacuum systems. We use high-energy-resolution photoelectron spectroscopy to reveal details of carbon temporal chemical state evolution, from carbide formed during film growth to adventitious carbon adsorbed upon contact with air. Using in-situ grown Al capping layers that protect the as-deposited transition metal nitride surfaces from oxidation, it is shown that the carbide forms during film growth rather than as a result of post deposition atmosphere exposure. The XPS signature of carbides is masked by the presence of adventitious carbon contamination, appearing as soon as samples are exposed to atmosphere, and eventually disappears after one week-long storage in lab atmosphere. The concentration of carbon assigned to carbide species varies from 0.28 at% for ZrN sample, to 0.25 and 0.11 at% for TiN and HfN, respectively. These findings are relevant for numerous applications, as unintentionally formed impurity phases may dramatically alter catalytic activity, charge transport and mechanical properties by offsetting the onset of thermally induced phase transitions. Therefore, the chemical state of C impurities in PVD-grown films should be carefully investigated. (C) 2016 Elsevier B.V. All rights reserved.
Funding Agencies|German Research Foundation (DFG) [SFB-TR 87]; VINN Excellence Center Functional Nanoscale Materials (FunMat) [2005-02666]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant) [SFO-Mat-LiU 2009-00971]; Knut and Alice Wallenberg Foundation [2011.0143]