liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

One-sided interval edge-colorings of bipartite graphsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Discrete Mathematics, ISSN 0012-365X, E-ISSN 1872-681X, Vol. 339, no 11, 2628-2639 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

ELSEVIER SCIENCE BV , 2016. Vol. 339, no 11, 2628-2639 p.
##### Keyword [en]

Interval edge-coloring; Bipartite graph; Edge coloring
##### National Category

Discrete Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-131491DOI: 10.1016/j.disc.2016.05.003ISI: 000380593200005OAI: oai:DiVA.org:liu-131491DiVA: diva2:974477
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

Let G be a bipartite graph with bipartition (X, Y). An X-interval coloring of G is a proper edge-coloring of G by integers such that the colors on the edges incident to any vertex in X form an interval. Denote by chi(int)(G, X) the minimum k such that G has an X-interval coloring with k colors. In this paper we give various upper and lower bounds on chi(int)(G, X) in terms of the vertex degrees of G. We also determine chi(int) (G, X) exactly for some classes of bipartite graphs G. Furthermore, we present upper bounds on chi(int) (G, X) for classes of bipartite graphs G with maximum degree Delta(G) at most 9: in particular, if Delta(G) = 4, then chi(int) (G, X) amp;lt;= 6; if Delta(G) = 5, then chi(int) (G, X) amp;lt;= 15; if Delta(G) = 6, then chi(int) (G, X) amp;lt;= 33. (C) 2016 Elsevier B.V. All rights reserved.

Funding Agencies|SVeFUM

Available from: 2016-09-26 Created: 2016-09-23 Last updated: 2016-10-19References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});