liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 777
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abdalla, Hassan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Investigation of the dimensionality of charge transport in organic field effect transistors2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 8, 85301Article in journal (Refereed)
    Abstract [en]

    Ever since the first experimental investigations of organic field effect transistors (OFETs) the dimensionality of charge transport has alternately been described as two dimensional (2D) and three dimensional (3D). More recently, researchers have turned to an analytical analysis of the temperature-dependent transfer characteristics to classify the dimensionality as either 2D or 3D as well as to determine the disorder of the system, thereby greatly simplifying dimensionality investigations. We applied said analytical analysis to the experimental results of our OFETs comprising molecularly well-defined polymeric layers as the active material as well as to results obtained from kinetic Monte Carlo simulations and found that it was not able to correctly distinguish between 2D and 3D transports or give meaningful values for the disorder and should only be used for quasiquantitative and comparative analysis. We conclude to show that the dimensionality of charge transport in OFETs is a function of the interplay between transistor physics and morphology of the organic material.

  • 2.
    Abrikosov, Igor A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Steneteg, Peter
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Hultberg, Lasse
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Hellman, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Yu Mosyagin, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Department of Theoretical Physics and Quantum Technologies, National Research, Technological University MISiS, Moscow, Russia.
    Lugovskoy, Andrey V.
    Department of Theoretical Physics and Quantum Technologies, National Research, Technological University MISiS, Russia.
    Barannikova, Svetlana A.
    Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Science, Tomsk, Russia; Department of Physics and Engineering, Tomsk State University, Tomsk, Russia.
    Finite Temperature, Magnetic, and Many-Body Effects in Ab Initio Simulations of Alloy Thermodynamics2013In: TMS2013 Supplemental Proceedings, John Wiley & Sons, 2013, 617-626 p.Chapter in book (Refereed)
    Abstract [en]

    Ab initio electronic structure theory is known as a useful tool for prediction of materials properties. However, majority of simulations still deal with calculations in the framework of density functional theory with local or semi-local functionals carried out at zero temperature. We present new methodological solution.s, which go beyond this approach and explicitly take finite temperature, magnetic, and many-body effects into account. Considering Ti-based alloys, we discuss !imitations of the quasiharmonic approximation for the treatment of lattice vibrations, and present an accurate and easily extendable method to calculate free ,energies of strongly anharmonic solids. We underline the necessity to going beyond the state-of-the-art techniques for the determination of effective cluster interactions in systems exhibiting mctal-to-insulator transition, and describe a unified cluster expansion approach developed for this class of materials. Finally, we outline a first-principles method, disordered local moments molecular dynamics, for calculations of thermodynamic properties of magnetic alloys, like Cr1-x,.AlxN, in their high-temperature paramagnetic state. Our results unambiguously demonstrate importance of finite temperature effects in theoretical calculations ofthermodynamic properties ofmaterials.

  • 3.
    Ahmad, Mohammed Metwally Gomaa
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. National Research Centre, Egypt.
    Yazdi, Gholamreza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Schmidt, Susann
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Boshta, M.
    National Research Centre, Egypt.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Farag, B. S.
    National Research Centre, Egypt.
    Osman, M. B. S.
    Ain Shams University, Egypt.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films2017In: Materials Science in Semiconductor Processing, ISSN 1369-8001, E-ISSN 1873-4081, Vol. 64, 32-38 p.Article in journal (Refereed)
    Abstract [en]

    Nickel oxide thin films were deposited by a simple and low-cost spray pyrolysis technique using three different precursors: nickel nitrate, nickel chloride, and nickel acetate on corning glass substrates. X-ray diffraction show that the NiO films are polycrystalline and have a cubic crystal structure, although predominantly with a preferred 111-orientation in the growth direction and a random in-plane orientation. The deconvolution of the Ni 2p and O 1s core level X-ray photoelectron-spectra of nickel oxides produced by using different precursors indicates a shift of the binding energies. The sprayed NiO deposited from nickel nitrate has an optical transmittance in the range of 60-65% in the visible region. The optical band gap energies of the sprayed NiO films deposited from nickel nitrate, nickel chloride and nickel acetate are 3.5, 3.2 and 3.43 eV respectively. Also, the extinction coefficient and refractive index of NiO films have been calculated from transmittance and reflectance measurements. The average value of refractive index for sprayed films by nickel nitrate, nickel chloride and nickel acetate are 2.1, 1.6 and 1.85 respectively. It is revealed that the band gap and refractive index of NiO films by using nickel nitrate corresponds to the commonly reported values. We attribute the observed behavior in the optical band gap and optical constants as due to the change of the Ni/O ratio.

    The full text will be freely available from 2019-03-16 17:22
  • 4.
    Alexander-Webber, J. A.
    et al.
    University of Oxford, England; University of Cambridge, England.
    Huang, J.
    University of Oxford, England.
    Maude, D. K.
    CNRS UGA UPS INSA, France.
    Janssen, T. J. B. M.
    National Phys Lab, England.
    Tzalenchuk, A.
    National Phys Lab, England; Royal Holloway University of London, England.
    Antonov, V.
    Royal Holloway University of London, England.
    Yager, T.
    Chalmers, Sweden.
    Lara-Avila, S.
    Chalmers, Sweden.
    Kubatkin, S.
    Chalmers, Sweden.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Nicholas, R. J.
    University of Oxford, England.
    Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, no 30296Article in journal (Refereed)
    Abstract [en]

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

  • 5.
    Ali, M.
    et al.
    Helsinki University of Technology (TKK), Micronova, Department of Micro and Nanosciences, P.O. Box 3500, FIN-02015 TKK, Finland.
    Svensk, Olle
    Helsinki University of Technology (TKK), Micronova, Department of Micro and Nanosciences, P.O. Box 3500, FIN-02015 TKK, Finland.
    Zhen, Z.
    Helsinki University of Technology (TKK), Micronova, Department of Micro and Nanosciences, P.O. Box 3500, FIN-02015 TKK, Finland.
    Suihkonen, S.
    Helsinki University of Technology (TKK), Micronova, Department of Micro and Nanosciences, P.O. Box 3500, FIN-02015 TKK, Finland.
    Törmä, P.T.
    Helsinki University of Technology (TKK), Micronova, Department of Micro and Nanosciences, P.O. Box 3500, FIN-02015 TKK, Finland.
    Lipsanen, H.
    Helsinki University of Technology (TKK), Micronova, Department of Micro and Nanosciences, P.O. Box 3500, FIN-02015 TKK, Finland.
    Sopanen, M.
    Helsinki University of Technology (TKK), Micronova, Department of Micro and Nanosciences, P.O. Box 3500, FIN-02015 TKK, Finland.
    Hjort, Klas
    Department of Engineering Sciences, Uppsala University, P.O. Box 534, SE-75121 Uppsala, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Reduced photoluminescence from InGaN/GaN multiple quantum well structures following 40 MeV iodine ion irradiation2009In: Physica. B, Condensed matter, ISSN 0921-4526, ISSN 0921-4526, Vol. 404, no 23-24, 4925-4928 p.Article in journal (Refereed)
    Abstract [en]

    The effects following ion irradiation of GaN-based devices are still limited. Here we present data on the photoluminescence (PL) emitted from InGaN/GaN multiple quantum well (MQW) structures, which have been exposed to 40 MeV I ion irradiation. The PL is reduced as a function of applied ion fluence, with essentially no PL signal left above 1011 ions/cm2. It is observed that even the ion fluences in the 109 ions/cm2 range have a pronounced effect on the photoluminescence properties of the MQW structures. This may have consequences concerning application of InGaN/GaN MQW’s in radiation-rich environments, in addition to defect build-up during ion beam analysis.

  • 6.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Configurational and Magnetic Interactions in Multicomponent Systems2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is a theoretical study of configurational and magnetic interactions in multicomponent solids. These interactions are the projections onto the configurational and magnetic degrees of freedom of the underlying electronic quantum mechanical system, and can be used to model, explain and predict the properties of materials. For example, the interactions govern temperature induced configurational and magnetic order-disorder transitions in Heusler alloys and ternary nitrides.

    In particular three perspectives are studied. The first is how the interactions can be derived from first-principles calculations at relevant physical conditions. The second is their consequences, like the critical temperatures for disordering, obtained with e.g. Monte Carlo simulations. The third is their origin in terms of the underlying electronic structure of the materials.

    Intrinsic defects in the half-Heusler system NiMnSb are studied and it is found that low-energy defects do not destroy the important half-metallic property at low concentrations. Deliberate doping of NiMnSb with 3d-metals is considered and it is found that replacing some Ni with extra Mn or Cr creates new strong magnetic interactions which could be beneficial for applications at elevated temperature. A self-consistent scheme to include the effects of thermal expansion and one-electron excitations in the calculation of the magnetic critical temperature is introduced and applied to a study of Ni1−xCuxMnSb.

    A supercell implementation of the disordered local moments approach is suggested and benchmarked for the treatment of paramagnetic CrN as a disordered magnetic phase. It is found that the orthorhombic-to-cubic phase transition in this nitride can be understood as a first-order magnetic order-disorder transition. The ferromagnetism in Ti1−xCrxN solid solutions, an unusual property in nitrides, is explained in terms of a charge transfer induced change in the Cr-Cr magnetic interactions.

    Cubic Ti1−xAlxN solid solutions displays a complex and concentration dependent phase separation tendency. A unified cluster expansion method is presented that can be used to simulate the configurational thermodynamics of this system. It is shown that short range clustering do influence the free energy of mixing but only slightly change the isostructural phase diagram as compared to mean-field estimates.

    List of papers
    1. Role of stoichiometric and nonstoichiometric defects on the magnetic properties of the half-metallic ferromagnet NiMnSb
    Open this publication in new window or tab >>Role of stoichiometric and nonstoichiometric defects on the magnetic properties of the half-metallic ferromagnet NiMnSb
    2006 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 73, no 6, 064418- p.Article in journal (Refereed) Published
    Abstract [en]

    The first material to be predicted from first-principles calculations as half-metallic was NiMnSb, and the research on this material has been intense due to its possible applications in spintronics devices. The failure of many experiments to measure spin polarization to more than a fraction of the predicted 100% has partly been blamed on structural defects. In this work a complete first-principles treatise of point defects, including nonstoichiometric antisites, interstitial and vacancy defects, as well as stoichiometric atomic swap defects in NiMnSb, is presented. We find that the formation energies of the defects span a large scale from 0.2 to 14.4 eV. The defects with low formation energies preserve the half-metallic character of the material. We also find that some of the defects increase the magnetic moment and thus can explain the experimentally observed increase of magnetic moments in some samples of NiMnSb. Most interesting in this respect are Mn interstitials which increase the magnetic moment, have a low formation energy, and keep the half-metallic character of the material.

    Keyword
    nickel alloys, manganese alloys, antimony alloys, ferromagnetic materials, ab initio calculations, interstitials, antisite defects, vacancies (crystal), defect states, magnetic moments
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-35025 (URN)10.1103/PhysRevB.73.064418 (DOI)24646 (Local ID)24646 (Archive number)24646 (OAI)
    Note
    Original Publication: Björn Alling, Sam Shallcross and Igor Abrikosov, Role of stoichiometric and nonstoichiometric defects on the magnetic properties of the half-metallic ferromagnet NiMnSb, 2006, Physical Review B. Condensed Matter and Materials Physics, (73), 6, 064418. http://dx.doi.org/10.1103/PhysRevB.73.064418 Copyright: American Physical Society http://www.aps.org/ Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2010-11-17
    2.
    The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.
    3.
    The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.
    4. Competition between Magnetic Structures in the Fe-Rich FCC FeNi Alloys
    Open this publication in new window or tab >>Competition between Magnetic Structures in the Fe-Rich FCC FeNi Alloys
    Show others...
    2007 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 76, no 1, 014434- p.Article in journal (Refereed) Published
    Abstract [en]

    We report on the results of a systematic ab initio study of the magnetic structure of Fe rich fcc FeNi binary alloys for Ni concentrations up to 50 at. %. Calculations are carried out within density-functional theory using two complementary techniques, one based on the exact muffin-tin orbital theory within the coherent potential approximation and another one based on the projector augmented-wave method. We observe that the evolution of the magnetic structure of the alloy with increasing Ni concentration is determined by a competition between a large number of magnetic states, collinear as well as noncollinear, all close in energy. We emphasize a series of transitions between these magnetic structures, in particular we have investigated a competition between disordered local moment configurations, spin spiral states, the double layer antiferromagnetic state, and the ferromagnetic phase, as well as the ferrimagnetic phase with a single spin flipped with respect to all others. We show that the latter should be particularly important for the understanding of the magnetic structure of the Invar alloys.

    Place, publisher, year, edition, pages
    American Physical Society, 2007
    Keyword
    Iron alloys, nickel alloys, ferromagnetic materials, magnetic structure, ab initio calculations, density functional theory, linear muffin-tin orbital method, local moments
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-14277 (URN)10.1103/PhysRevB.76.014434 (DOI)
    Note
    Original Publication: Igor A. Abrikosov, Andreas E. Kissavos, Francois Liot, Björn Alling, Sergey Simak, O. Peil and A. V. Ruban, Competition between Magnetic Structures in the Fe-Rich FCC FeNi Alloys, 2007, Physical Review B Condensed Matter, (76), 1, 014434. http://dx.doi.org/10.1103/PhysRevB.76.014434 Copyright: American Physical Society http://www.aps.org/Available from: 2007-02-01 Created: 2007-02-01 Last updated: 2012-07-05Bibliographically approved
    5. Questionable collapse of the bulk modulus in CrN
    Open this publication in new window or tab >>Questionable collapse of the bulk modulus in CrN
    2010 (English)In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 9, no 4, 283-284 p.Article in journal, Letter (Other academic) Published
    Abstract [en]

    In this comment we show that the main conclusion in a previous article, claiminga drastic increase in compressibility of CrN at the cubic to orthorhombic phasetransition, is unsupported by first-principles calculations. We show that if thecubic CrN phase is considered as a disordered magnetic material, as supported bydifferent experimental data, rather then non-magnetic, the bulk modulus is almostunaffected by the transition.

    Place, publisher, year, edition, pages
    London, UK: Nature Publishing Group, 2010
    Keyword
    CrN, phase-transition, magnetism, bulk modulus, first-principles
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-60438 (URN)10.1038/nmat2722 (DOI)000275901000002 ()
    Available from: 2010-10-13 Created: 2010-10-13 Last updated: 2014-04-03Bibliographically approved
    6. Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN
    Open this publication in new window or tab >>Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN
    2010 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 82, 184430- p.Article in journal (Refereed) Published
    Abstract [en]

    Two different methods for the modeling of a magnetically disordered CrN stateusing a supercell approach are investigated. They are found to give equivalentresults of the total energy, being also similar to results obtained with an effectivemedium approach. Furthermore, CrN is shown to be better described using aLDA+U framework for the treatment of electron-electron correlations as comparedto GGA or LDA calculations. Modeling the cubic paramagnetic phase with ourmodels for magnetic disorder and considering the strong electron correlations, thetemperature and pressure induced phase transitions in CrN can be explained.

    Place, publisher, year, edition, pages
    American institute of physics, 2010
    Keyword
    CrN, magnetic disorder, nitrides, LDA+U, SQS, phase transition, chromium compounds
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-60439 (URN)10.1103/PhysRevB.82.184430 (DOI)000291462500005 ()
    Available from: 2010-10-13 Created: 2010-10-13 Last updated: 2011-09-20
    7. Theory of the ferromagnetism in Ti1-xCrxN solid solutions
    Open this publication in new window or tab >>Theory of the ferromagnetism in Ti1-xCrxN solid solutions
    2010 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 82, no 5, 054408- p.Article in journal (Refereed) Published
    Abstract [en]

    First-principles calculations are used to investigate the magnetic properties of Ti1‑xCrxN solid solutions. We show that the magnetic interactions between Cr spins that favor antiferromagnetism in CrN is changed upon alloying with TiN leading to the appearance of ferromagnetism in the system at approximately x≤0.50 in agreement with experimental reports. Furthermore we suggest that this effect originates in an electron density redistribution from Ti to Cr that decreases the polarization of Crd states with t2g symmetry while it increases the polarization of Crd states with eg symmetry, both changes working in favor of ferromagnetism.

    Keyword
    TiN, CrN, TiCrN, solid solutions, first-principles, magnetic interactions, ferromagnetism, electronic structure
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-60441 (URN)10.1103/PhysRevB.82.054408 (DOI)
    Note
    Original Publication: Björn Alling, Theory of the ferromagnetism in Ti1-xCrxN solid solutions, 2010, Physical Review B Condensed Matter, (82), 5, 054408. http://dx.doi.org/10.1103/PhysRevB.82.054408 Copyright: American Physical Society http://www.aps.org/Available from: 2010-10-13 Created: 2010-10-13 Last updated: 2012-08-13
    8. A unified cluster expansion method applied to the configurational thermodynamics of cubic TiAlN
    Open this publication in new window or tab >>A unified cluster expansion method applied to the configurational thermodynamics of cubic TiAlN
    Show others...
    2011 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 83, no 10, 104203- p.Article in journal (Refereed) Published
    Abstract [en]

    We use a study of the cubic Ti1−xAlxN system to illustrate a practical way of combining the major methodologies within alloy theory, the Connolly-Williams cluster expansion and the generalized perturbation method, in order to solve difficult alloy problems. The configurational, concentration dependent, Hamiltonian is separated into a fixed-lattice and a local lattice relaxation part. The effective cluster interactions of the first part is obtained primarily with a GPM-based approach while the later is obtained using cluster expansion. In our case the impact on the isostructural phase diagram of considering short range clustering beyond the mean field approximation, obtained from the mixing enthalpy and entropy of the random alloy, is rather small, especially in the composition region x ≤ 0.66, within reach of thin film growth techniques.

    Place, publisher, year, edition, pages
    American Physical Society, 2011
    Keyword
    TiAlN, TiN, AlN, cluster expansion, GPM, spinodal decomposition, first-principles, titanium aluminium nitride, clustering, phase separation
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-60442 (URN)10.1103/PhysRevB.83.104203 (DOI)000288782700004 ()
    Note
    Original Publication: Björn Alling, A. V. Ruban, A Karimi, Lars Hultman and Igor Abrikosov, A unified cluster expansion method applied to the configurational thermodynamics of cubic TiAlN, 2011, Physical Review B. Condensed Matter and Materials Physics, (83), 10, 104203. http://dx.doi.org/10.1103/PhysRevB.83.104203 Copyright: American Physical Society http://www.aps.org/ Available from: 2010-10-13 Created: 2010-10-13 Last updated: 2016-08-31
    9. Pressure enhancement of the isostructural cubic decomposition in Ti1−xAlxN
    Open this publication in new window or tab >>Pressure enhancement of the isostructural cubic decomposition in Ti1−xAlxN
    2009 (English)In: Applied Physics Letters, ISSN 0003-6951, Vol. 95, no 181906Article in journal (Refereed) Published
    Abstract [en]

    The influence of pressure on the phase stabilities of Ti1−xAlxN solid solutions has been studied using first principles calculations. We find that the application of hydrostatic pressure enhances the tendency for isostructural decomposition, including spinodal decomposition. The effect originates in the gradual pressure stabilization of cubic AlN with respect to the wurtzite structure and an increased isostructural cubic mixing enthalpy with increased pressure. The influence is sufficiently strong in the composition-temperature interval corresponding to a shoulder of the spinodal line that it could impact the stability of the material at pressures achievable in the tool-work piece contact during cutting operations

    Keyword
    ab initio calculations, aluminium compounds, enthalpy, high-pressure effects, mixing, solid solutions, spinodal decomposition, titanium compounds
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-51569 (URN)10.1063/1.3256196 (DOI)
    Note
    Original Publication: Björn Alling, Magnus Odén, Lars Hultman and Igor Abrikosov, Pressure enhancement of the isostructural cubic decomposition in Ti1-xAlxN, 2009, Applied Physics Letters, (95), 181906. http://dx.doi.org/10.1063/1.3256196 Copyright: American Institute of Physics http://www.aip.org/ Available from: 2009-11-07 Created: 2009-11-07 Last updated: 2016-08-31
    10. Effects of volume mismatch and electronic structure on the decomposition of ScAlN and TiAlN solid solutions
    Open this publication in new window or tab >>Effects of volume mismatch and electronic structure on the decomposition of ScAlN and TiAlN solid solutions
    Show others...
    2010 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, no 22, 224101- p.Article in journal (Refereed) Published
    Abstract [en]

    Thin solid films of metastable rocksalt structure (c-) Sc1-xAlxN and Ti1-xAlxN were employed as model systems to investigate the relative influence of volume mismatch and electronic structure driving forces for phase separation. Reactive dual magnetron sputtering was used to deposit stoichiometric Sc0.57Al0.43N(111) and Ti0.51Al0.49N(111) thin films, at 675 °C and 600 °C, respectively, followed by stepwise annealing to a maximum temperature of 1100 °C. Phase transformations during growth and annealing were followed in situ using X-ray scattering. The results show that the as-deposited Sc0.57Al0.43N films phase separate at 1000 °C – 1100 °C into non-isostructural c-ScN and wurtzite-structure (w-) AlN, via nucleation and growth at domain boundaries. Ti0.51Al0.49N, however, exhibits spinodal decomposition into isostructural coherent c-TiN and c-AlN, in the temperature interval of 800 °C – 1000 °C. X-ray pole figures show the coherency between c-ScN and w-AlN, with AlN(0001) || ScN(001) and AlN<01ɸ10> || ScN<1ɸ10>. First principles calculations of mixing energy-lattice spacing curves explain the results on a fundamental physics level and open a route for design of novel metastable pseudobinary phases for hard coatings and electronic materials.

    Keyword
    TiAlN, ScAlN, spinodal decomposition, nitrides, TiN, ScN, AlN, XRD, TEM, first-principles, phase separation, meta stable
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-56270 (URN)10.1103/PhysRevB.81.224101 (DOI)000278300900004 ()
    Note
    Original Publication: Carina Höglund, Björn Alling, Jens Birch, Manfred Beckers, Per O. Å. Persson, Carsten Baehtz, Zsolt Czigány, Jens Jensen and Lars Hultman, Effects of volume mismatch and electronic structure on the decomposition of ScAlN and TiAlN solid solutions, 2010, Physical Review B. Condensed Matter and Materials Physics, (81), 22, 224101. http://dx.doi.org/10.1103/PhysRevB.81.224101 Copyright: American Physical Society http://www.aps.org/ Available from: 2010-05-06 Created: 2010-05-06 Last updated: 2016-08-31
    11.
    The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.
  • 7.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Theory of the ferromagnetism in Ti1-xCrxN solid solutions2010In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 82, no 5, 054408- p.Article in journal (Refereed)
    Abstract [en]

    First-principles calculations are used to investigate the magnetic properties of Ti1‑xCrxN solid solutions. We show that the magnetic interactions between Cr spins that favor antiferromagnetism in CrN is changed upon alloying with TiN leading to the appearance of ferromagnetism in the system at approximately x≤0.50 in agreement with experimental reports. Furthermore we suggest that this effect originates in an electron density redistribution from Ti to Cr that decreases the polarization of Crd states with t2g symmetry while it increases the polarization of Crd states with eg symmetry, both changes working in favor of ferromagnetism.

  • 8.
    Alling, Björn
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Ekholm, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Energetics and magnetic impact of 3d-metal doping of the half-metallic ferromagnet NiMnSb2008In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 77, no 14, 144414- p.Article in journal (Refereed)
    Abstract [en]

    We have performed a theoretical study of the effect of doping the half-Heusler alloy NiMnSb with the magnetic 3d metals Cr, Mn, Fe, Co, and Ni, with respect to both energetics and magnetic properties. Starting from the formation energies, we discuss the possibility of placing the dopant on different crystallographic positions in the alloy. We calculate total and local magnetic moments, effective exchange interactions, and density of states and also outline strategies to tune the magnetic properties of the alloy. Doping of NiMnSb with Cr as well as substituting some Ni with extra Mn have the largest impact on magnetic interactions in the system while preserving its half-metallic property. Therefore, we suggest the possibility that these dopants increase the thermal stability of half-metallicity in NiMnSb, with implications for its possible usage in spintronics applications.

  • 9.
    Alling, Björn
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Max Planck Institute Eisenforsch GmbH, Germany.
    Koermann, F.
    Max Planck Institute Eisenforsch GmbH, Germany; Delft University of Technology, Netherlands.
    Grabowski, B.
    Max Planck Institute Eisenforsch GmbH, Germany.
    Glensk, A.
    Max Planck Institute Eisenforsch GmbH, Germany.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. National University of Science and Technology MISIS, Russia.
    Neugebauer, J.
    Max Planck Institute Eisenforsch GmbH, Germany.
    Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics2016In: PHYSICAL REVIEW B, ISSN 2469-9950, Vol. 93, no 22, 224411Article in journal (Refereed)
    Abstract [en]

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the gamma-delta transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the gamma-delta transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  • 10.
    Alling, Björn
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Marten, Tobias
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Questionable collapse of the bulk modulus in CrN2010In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 9, no 4, 283-284 p.Article in journal (Other academic)
    Abstract [en]

    In this comment we show that the main conclusion in a previous article, claiminga drastic increase in compressibility of CrN at the cubic to orthorhombic phasetransition, is unsupported by first-principles calculations. We show that if thecubic CrN phase is considered as a disordered magnetic material, as supported bydifferent experimental data, rather then non-magnetic, the bulk modulus is almostunaffected by the transition.

  • 11.
    Alnoor, Hatim
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Toward the Optimization of Low-temperature Solution-based Synthesis of ZnO Nanostructures for Device Applications2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    One-dimensional (1D) nanostructures (NSs) of Zinc Oxide (ZnO) such as nanorods (NRs) have recently attracted considerable research attention due to their potential for the development of optoelectronic devices such as ultraviolet (UV) photodetectors and light-emitting diodes (LEDs). The potential of ZnO NRs in all these applications, however, would require synthesis of high crystal quality ZnO NRs with precise control over the optical and electronic properties. It is known that the optical and electronic properties of ZnO NRs are mostly influenced by the presence of native (intrinsic) and impurities (extrinsic) defects. Therefore, understanding the nature of these intrinsic and extrinsic defects and their spatial distribution is critical for optimizing the optical and electronic properties of ZnO NRs. However, identifying the origin of such defects is a complicated matter, especially for NSs, where the information on anisotropy is usually lost due to the lack of coherent orientation.

    Thus, the aim of this thesis is towards the optimization of the lowtemperature solution-based synthesis of ZnO NRs for device applications. In this connection, we first started with investigating the effect of the precursor solution stirring durations on the deep level defects concentration and their spatial distribution along the ZnO NRs. Then, by choosing the optimal stirring time, we studied the influence of ZnO seeding layer precursor’s types, and its molar ratios on the density of interface defects. The findings of these investigations were used to demonstrate ZnO NRs-based heterojunction LEDs. The ability to tune the point defects along the NRs enabled us further to incorporate cobalt (Co) ions into the ZnO NRs crystal lattice, where these ions could occupy the vacancies or interstitial defects through substitutional or interstitial doping. Following this, high crystal quality vertically welloriented ZnO NRs have been demonstrated by incorporating a small amount of Co into the ZnO crystal lattice. Finally, the influence of Co ions incorporation on the reduction of core-defects (CDs) in ZnO NRs was systematically examined using electron paramagnetic resonance (EPR).

    List of papers
    1. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods
    Open this publication in new window or tab >>Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods
    Show others...
    2015 (English)In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 5, no 8, 087180Article in journal (Refereed) Published
    Abstract [en]

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 degrees C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (mu-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

    Place, publisher, year, edition, pages
    AMER INST PHYSICS, 2015
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-122070 (URN)10.1063/1.4929981 (DOI)000360655900089 ()
    Note

    Funding Agencies|Avdanced Functional Materials (AFM) SFO project at Linkoping Univeristy, Sweden

    Available from: 2015-12-18 Created: 2015-10-19 Last updated: 2017-10-06
    2. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes
    Open this publication in new window or tab >>Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes
    Show others...
    2016 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, no 16, 165702- p.Article in journal (Refereed) Published
    Abstract [en]

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5M exhibit stronger yellow emission (similar to 575 nm) compared to those based on 1:1 and 1:3M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination. Published by AIP Publishing.

    Place, publisher, year, edition, pages
    AMER INST PHYSICS, 2016
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-129174 (URN)10.1063/1.4947593 (DOI)000375929900043 ()
    Note

    Funding Agencies|Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]

    Available from: 2016-06-13 Created: 2016-06-13 Last updated: 2017-10-06
    3. Seed layer synthesis effect on the concentration of interface defects and emission spectra of ZnO nanorods/p-GaN light-emitting diode
    Open this publication in new window or tab >>Seed layer synthesis effect on the concentration of interface defects and emission spectra of ZnO nanorods/p-GaN light-emitting diode
    2017 (English)In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 214, no 1, 1600333Article in journal (Refereed) Published
    Abstract [en]

    As the low-temperature aqueous chemical synthesis (LT-ACS), holds great promises for the synthesis of one-dimensional (1D) ZnO nanostructure-based light-emitting diodes (LEDs) and hence require parameter tuning for optimal performance. N-ZnO nanorods (NRs)/p-GaN heterojunction LEDs have been synthesized by the LT-ACS using ZnO nanoparticle (NPs) seed layers prepared with different precursor solutions. The effect of these seed layers on the interface defect properties and emission intensity of the as-synthesized n-Zn/p-GaN heterojunction LEDs has been demonstrated by spatially resolved cathodoluminescence (CL) and electroluminescence (EL) measurements, respectively. A significant reduction of the interface defects in the n-ZnO NRs/p-GaN heterostructure synthesized from a seed layer prepared from zinc acetate (ZnAc) with a mixture of potassium hydroxide (KOH) and hexamethylenetetramine (HMTA) (donated as ZKH seed) compared with those prepared from ZnAc and KOH (donated as ZK seed) is observed as revealed by spatially resolved CL. Consequently, the LEDs based on n-ZnO NRs/p-GaN prepared from ZKH seed show an improvement in the yellow emission (approximate to 578nm) compared to that based on the ZK seed as deduced from the electroluminescence measurements. The improvement in the yellow EL emission on the ZKH LED probably attributed to the low presence of the non-radiative defect as deduced by light-output current (L-I) characteristics analysis.

    Place, publisher, year, edition, pages
    WILEY-V C H VERLAG GMBH, 2017
    Keyword
    GaN; interface defects; light-emitting diodes; low-temperature aqueous chemical synthesis; seed layers; ZnO
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-136230 (URN)10.1002/pssa.201600333 (DOI)000394423400006 ()
    Note

    Funding Agencies|Swedish Government Strategic Research Area in Materials Science on Functional Materials (Faculty Grant SFO-Mat-LiU) at Linkoping University [2009-00971]

    Available from: 2017-03-31 Created: 2017-03-31 Last updated: 2017-10-06
    4. EPR investigation of pure and Co-doped ZnO oriented nanocrystals
    Open this publication in new window or tab >>EPR investigation of pure and Co-doped ZnO oriented nanocrystals
    Show others...
    2017 (English)In: NANOTECHNOLOGY, ISSN 0957-4484, Vol. 28, no 3, 035705Article in journal (Refereed) Published
    Abstract [en]

    Pure and cobalt-doped zinc oxide aligned nanorods have been grown by the low-temperature (90 degrees C) aqueous chemical method on amorphous ZnO seed layer, deposited on a sapphire substrate. High crystallinity of these objects is demonstrated by the electron paramagnetic resonance investigation at liquid helium temperature. The successful incorporation of Co2+ ions in substitution of Zn2+ ones in the ZnO matrix has also been confirmed. A drastic reduction of intrinsic ZnO nanorods core defects is observed in the Co-doped samples, which enhances the structural quality of the NRs. The quantification of substitutional Co2+ ions in the ZnO matrix is achieved by comparison with a reference sample. The findings in this study indicate the potential of using the low-temperature aqueous chemical approach for synthesizing material for spintronics applications.

    Place, publisher, year, edition, pages
    IOP PUBLISHING LTD, 2017
    Keyword
    nanorods; magnetic properties; electron paramagnetic resonance; diluted magnetic semiconductors
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-134300 (URN)10.1088/1361-6528/28/3/035705 (DOI)000391289300001 ()27966469 (PubMedID)
    Note

    Funding Agencies|NATO project [SfP 984735]

    Available from: 2017-02-06 Created: 2017-02-03 Last updated: 2017-10-06
    5. An effective low-temperature solution synthesis of Co-doped [0001]-oriented ZnO nanorods
    Open this publication in new window or tab >>An effective low-temperature solution synthesis of Co-doped [0001]-oriented ZnO nanorods
    Show others...
    2017 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 21, 215102Article in journal (Refereed) Published
    Abstract [en]

    We demonstrate an efficient possibility to synthesize vertically aligned pure zinc oxide (ZnO) and Co-doped ZnO nanorods (NRs) using the low-temperature aqueous chemical synthesis (90 degrees C). Two different mixing methods of the synthesis solutions were investigated for the Co-doped samples. The synthesized samples were compared to pure ZnO NRs regarding the Co incorporation and crystal quality. Electron paramagnetic resonance (EPR) measurements confirmed the substitution of Co2+ inside the ZnO NRs, giving a highly anisotropic magnetic Co2+ signal. The substitution of Zn2+ by Co2+ was observed to be combined with a drastic reduction in the core-defect (CD) signal (g similar to 1.956) which is seen in pure ZnO NRs. As revealed by the cathodoluminescence (CL), the incorporation of Co causes a slight red-shift of the UV peak position combined with an enhancement in the intensity of the defect-related yellow-orange emission compared to pure ZnO NRs. Furthermore, the EPR and the CL measurements allow a possible model of the defect configuration in the samples. It is proposed that the as-synthesized pure ZnO NRs likely contain Zn interstitial (Zn-i(+)) as CDs and oxygen vacancy (V-O) or oxygen interstitial (O-i) as surface defects. As a result, Co was found to likely occupy the Zn-i(+), leading to the observed CDs reduction and hence enhancing the crystal quality. These results open the possibility of synthesis of highly crystalline quality ZnO NRs-based diluted magnetic semiconductors using the low-temperature aqueous chemical method. Published by AIP Publishing.

    Place, publisher, year, edition, pages
    AMER INST PHYSICS, 2017
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-138890 (URN)10.1063/1.4984314 (DOI)000402768900026 ()
    Note

    Funding Agencies|NATO [984735]

    Available from: 2017-06-27 Created: 2017-06-27 Last updated: 2017-10-06
    6. Core-defect reduction in ZnO nanorods by cobalt incorporation
    Open this publication in new window or tab >>Core-defect reduction in ZnO nanorods by cobalt incorporation
    Show others...
    2017 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 28, no 28, 285705Article in journal (Refereed) Published
    Abstract [en]

    Zinc oxide (ZnO) nanorods grown by the low-temperature (90 degrees C) aqueous chemical method with different cobalt concentration within the synthesis solution (from 0% to 15%), are studied by electron paramagnetic resonance (EPR), just above the liquid helium temperature. The anisotropic spectra of substitutional Co2+ reveal a high crystalline quality and orientation of the NRs, as well as the probable presence of a secondary disordered phase of ZnO: Co. The analysis of the EPR spectra indicates that the disappearance of the paramagnetic native core-defect (CD) at g similar to 1.96 is correlated with the apparition of the Co2+ ions lines, suggesting a gradual neutralization of the former by the latter. We show that only a little amount of cobalt in the synthesis solution (about 0.2%) is necessary to suppress almost all these paramagnetic CDs. This gives insight in the experimentally observed improvement of the crystal quality of diluted ZnO: Co nanorods, as well as into the control of paramagnetic defects in ZnO nanostructures.

    Place, publisher, year, edition, pages
    IOP PUBLISHING LTD, 2017
    Keyword
    nanorods; ZnO; physics defects; electron paramagnetic resonance
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-139388 (URN)10.1088/1361-6528/aa716a (DOI)000404344400005 ()28475103 (PubMedID)
    Note

    Funding Agencies|NATO project Science for Peace (SfP), Novel nanostructures [984735]

    Available from: 2017-08-07 Created: 2017-08-07 Last updated: 2017-10-06
  • 12.
    Alnoor, Hatim
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Chey, Chan Oeurn
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods2015In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 5, no 8, 087180Article in journal (Refereed)
    Abstract [en]

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 degrees C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (mu-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  • 13.
    Alnoor, Hatim
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Seed layer synthesis effect on the concentration of interface defects and emission spectra of ZnO nanorods/p-GaN light-emitting diode2017In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 214, no 1, 1600333Article in journal (Refereed)
    Abstract [en]

    As the low-temperature aqueous chemical synthesis (LT-ACS), holds great promises for the synthesis of one-dimensional (1D) ZnO nanostructure-based light-emitting diodes (LEDs) and hence require parameter tuning for optimal performance. N-ZnO nanorods (NRs)/p-GaN heterojunction LEDs have been synthesized by the LT-ACS using ZnO nanoparticle (NPs) seed layers prepared with different precursor solutions. The effect of these seed layers on the interface defect properties and emission intensity of the as-synthesized n-Zn/p-GaN heterojunction LEDs has been demonstrated by spatially resolved cathodoluminescence (CL) and electroluminescence (EL) measurements, respectively. A significant reduction of the interface defects in the n-ZnO NRs/p-GaN heterostructure synthesized from a seed layer prepared from zinc acetate (ZnAc) with a mixture of potassium hydroxide (KOH) and hexamethylenetetramine (HMTA) (donated as ZKH seed) compared with those prepared from ZnAc and KOH (donated as ZK seed) is observed as revealed by spatially resolved CL. Consequently, the LEDs based on n-ZnO NRs/p-GaN prepared from ZKH seed show an improvement in the yellow emission (approximate to 578nm) compared to that based on the ZK seed as deduced from the electroluminescence measurements. The improvement in the yellow EL emission on the ZKH LED probably attributed to the low presence of the non-radiative defect as deduced by light-output current (L-I) characteristics analysis.

  • 14.
    Alnoor, Hatim
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Savoyant, Adrien
    Aix Marseille University, France.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    An effective low-temperature solution synthesis of Co-doped [0001]-oriented ZnO nanorods2017In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 21, 215102Article in journal (Refereed)
    Abstract [en]

    We demonstrate an efficient possibility to synthesize vertically aligned pure zinc oxide (ZnO) and Co-doped ZnO nanorods (NRs) using the low-temperature aqueous chemical synthesis (90 degrees C). Two different mixing methods of the synthesis solutions were investigated for the Co-doped samples. The synthesized samples were compared to pure ZnO NRs regarding the Co incorporation and crystal quality. Electron paramagnetic resonance (EPR) measurements confirmed the substitution of Co2+ inside the ZnO NRs, giving a highly anisotropic magnetic Co2+ signal. The substitution of Zn2+ by Co2+ was observed to be combined with a drastic reduction in the core-defect (CD) signal (g similar to 1.956) which is seen in pure ZnO NRs. As revealed by the cathodoluminescence (CL), the incorporation of Co causes a slight red-shift of the UV peak position combined with an enhancement in the intensity of the defect-related yellow-orange emission compared to pure ZnO NRs. Furthermore, the EPR and the CL measurements allow a possible model of the defect configuration in the samples. It is proposed that the as-synthesized pure ZnO NRs likely contain Zn interstitial (Zn-i(+)) as CDs and oxygen vacancy (V-O) or oxygen interstitial (O-i) as surface defects. As a result, Co was found to likely occupy the Zn-i(+), leading to the observed CDs reduction and hence enhancing the crystal quality. These results open the possibility of synthesis of highly crystalline quality ZnO NRs-based diluted magnetic semiconductors using the low-temperature aqueous chemical method. Published by AIP Publishing.

  • 15.
    Andringa, Anne-Marije
    et al.
    University of Groningen, Netherlands; Philips Research Labs, Netherlands.
    Christian Roelofs, W. S.
    Philips Research Labs, Netherlands; Technical University of Eindhoven, Netherlands.
    Sommer, Michael
    University of Bayreuth, Germany; University of Freiburg, Germany.
    Thelakkat, Mukundan
    University of Bayreuth, Germany.
    Kemerink, Martijn
    Technical University of Eindhoven, Netherlands.
    de Leeuw, Dago M.
    University of Groningen, Netherlands; Philips Research Labs, Netherlands.
    Localizing trapped charge carriers in NO2 sensors based on organic field-effect transistors2012In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 101, no 15, 153302Article in journal (Refereed)
    Abstract [en]

    Field-effect transistors have emerged as NO2 sensors. The detection relies on trapping of accumulated electrons, leading to a shift of the threshold voltage. To determine the location of the trapped electrons we have delaminated different semiconductors from the transistors with adhesive tape and measured the surface potential of the revealed gate dielectric with scanning Kelvin probe microscopy. We unambiguously show that the trapped electrons are not located in the semiconductor but at the gate dielectric. The microscopic origin is discussed. Pinpointing the location paves the way to optimize the sensitivity of NO2 field-effect sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758697]

  • 16.
    Aquila, Andrew L.
    et al.
    Lawrence Berkeley National Laboratory, USA.
    Salmassi, Fahrad
    Lawrence Berkeley National Laboratory, USA.
    Gullikson, Eric M.
    Lawrence Berkeley National Laboratory, USA.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Measurements of the optical constants of scandium in the 50-1300 eV range2004In: SPIE 5538, Optical Constants of Materials for UV to X-Ray Wavelengths / [ed] Regina Soufli, John F. Seely, SPIE - International Society for Optical Engineering, 2004, 64-71 p.Conference paper (Refereed)
    Abstract [en]

    Scandium containing multilayers have been produced with very high reflectivity in the soft x-ray spectrum.  Accurate optical constants are required in order to model the multilayer reflectivity.  Since there are relatively few measurements of the optical constants of Scandium in the soft x-ray region we have performed measurements over the energy range of 50-1,300 eV.  Thin films of Scandium were deposited by ion-assisted magnetron sputtering at Linkoping University and DC Magnetron sputtering at CXRO.  Transmission measurements were performed at the Advanced Light Source beamline 6.3.2.  The absorption coefficient was deduced from the measurements and the dispersive part of the index of refraction was obtained using the Kramers-Kronig relation.  The measured optical constants are used to model the near-normal incidence reflectivity of Cr/Sc multilayers near the Sc L2,3 edge.

  • 17.
    Armakavicius, Nerijus
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Study of novel electronic materials by mid-infrared and terahertz optical Hall effect2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Development of silicon based electronics have revolutionized our every day life during the last three decades. Nowadays Si based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, Si cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for a progress in state of the art electronics.

    Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in the current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene.

    III-group nitrides have been extensively studied and already have proven their high efficiency as light sources for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for III-group nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions.

    Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical contact within the structure. Moreover, the use of electrical contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures.

    The optical Hall effect is an external magnetic field induced optical anisotropy in  conductive layers due to the motion of the free charge carriers under the influence of the Lorentz force, and is equivalent to the electrical Hall effect at optical frequencies. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. In principle, a single optical Hall effect measurement can provide quantitative information about free charge carrier types, concentrations, mobilities and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. Further, it was demonstrated that for transparent samples, a backside cavity can be employed to enhance the optical Hall effect.

    Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric data by varying physically significant parameters. Analysis of the optical response of samples, containing free charge carriers, employing optical models based on the classical Drude model, which is augmented with an external magnetic field contribution, provide access to the free charge carrier properties.

    The main research results of the graduate studies presented in this licentiate thesis are summarized in the five scientific papers.

    Paper I. Description of the custom-built terahertz frequency-domain spectroscopic ellipsometer at Linköping University. The terahertz ellipsometer capabilities are demonstrated by an accurate determination of the isotropic and anisotropic refractive indices of silicon and m-plane sapphire, respectively. Further, terahertz optical Hall effect measurements of an AlGaN/GaN high electron mobility structures were employed to extract the two-dimensional electron gas sheet density, mobility and effective mass parameters. Last, in-situ optical Hall effect measurement on epitaxial graphene in a gas cell with controllable environment, were used to study the effects of environmental doping on the mobility and carrier concentration.

    Paper II. Presents terahertz cavity-enhanced optical Hall measurements of the monolayer and multilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm−2 range and a carrier mobility of 1550 cm2/V·s. For the multilayer epitaxial graphene, n-type doping with a carrier density in the low 1013 cm−2 range, a mobility of 470 cm2/V·s and an effective mass of (0.14 ± 0.03) m0 were extracted. The measurements demonstrate that cavity-enhanced optical Hall effect measurements can be applied to study electronic properties of two-dimensional materials.

    Paper III. Terahertz cavity-enhanced optical Hall effect measurements are employed to study anisotropic transport in as-grown monolayer, quasi free-standing monolayer and quasi free-standing bilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed a strong anisotropy in the carrier mobilities of the quasi freestanding bilayer graphene. The anisotropy is demonstrated to be induced by carriers scattering at the step edges of the SiC, by showing that the mobility is higher along the step than across them. The scattering mechanism is discussed based on the results of the optical Hall effect, low-energy electron microscopy, low-energy electron diffraction and Raman measurements.

    Paper IV. Mid-infrared spectroscopic ellipsometry and mid-infrared optical Hall effect measurements are employed to determine the electron effective mass in an In0.33Ga0.67N epitaxial layer. The data analysis reveals slightly anisotropic effective mass and carrier mobility parameters together with the optical phonon frequencies and broadenings.

    Paper V. Terahertz cavity-enhanced optical Hall measurements are employed to study the free charge carrier properties in a set of AlGaN/GaN high electron mobility structures with modified interfaces. The results show that the interface structure has a significant effect on the free charge carrier mobility and that the sample with a sharp interface between an AlGaN barrier and a GaN buffer layers exhibits a record mobility of 2332±73 cm2/V·s. The determined effective mass parameters showed an increase compared to the GaN value, that is attributed the the penetration of the electron wavefunction into the AlGaN barrier layer.

    List of papers
    1. Cavity-enhanced optical Hall effect in epitaxial graphene detected at terahertz frequencies
    Open this publication in new window or tab >>Cavity-enhanced optical Hall effect in epitaxial graphene detected at terahertz frequencies
    Show others...
    2017 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 421, 357-360 p.Article in journal (Refereed) Published
    Abstract [en]

    Cavity-enhanced optical Hall effect at terahertz (THz) frequencies is employed to determine the free charge carrier properties in epitaxial graphene (EG) with different number of layers grown by high-temperature sublimation on 4H-SiC(0001). We find that one monolayer (ML) EG possesses p-type conductivity with a free hole concentration in the low 1012 cmᅵᅵᅵ2 range and a free hole mobility parameter as high as 1550 cm2/Vs. We also find that 6 ML EG shows n-type doping behavior with a much lower free electron mobility parameter of 470 cm2/Vs and an order of magnitude higher free electron density in the low 1013 cmᅵᅵᅵ2 range. The observed differences are discussed. The cavity-enhanced THz optical Hall effect is demonstrated to be an excellent tool for contactless access to the type of free charge carriers and their properties in two-dimensional materials such as EG.

    Place, publisher, year, edition, pages
    Elsevier, 2017
    Keyword
    THz optical Hall effect, Epitaxial graphene, Free charge carrier properties
    National Category
    Physical Sciences Condensed Matter Physics Atom and Molecular Physics and Optics Ceramics
    Identifiers
    urn:nbn:se:liu:diva-132407 (URN)10.1016/j.apsusc.2016.10.023 (DOI)000408756700015 ()
    Note

    Funding agencies: Swedish Research Council (VR) [2013-5580]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program [2011-03486, 2014-04712]; Swedish foundation for strategic research (SSF) [FFL12-0181, RIF14-055]

    Available from: 2016-11-09 Created: 2016-11-09 Last updated: 2017-10-23Bibliographically approved
    2. Properties of two-dimensional electron gas in AlGaN/GaN HEMT structures determined by cavity-enhanced THz optical Hall effect
    Open this publication in new window or tab >>Properties of two-dimensional electron gas in AlGaN/GaN HEMT structures determined by cavity-enhanced THz optical Hall effect
    Show others...
    2016 (English)In: Physica Status Solidi C-Current Topics in Solid State Physics, Vol 13 No 5-6, Wiley-VCH Verlagsgesellschaft, 2016, Vol. 13, no 5-6, 369-373 p.Conference paper, Published paper (Refereed)
    Abstract [en]

    In this work we employ terahertz (THz) ellipsometry to determine two-dimensional electron gas (2DEG) density, mobility and effective mass in AlGaN/GaN high electron mobility transistor structures grown on 4H-SiC substrates. The effect of the GaN interface exposure to low-flow-rate trimethylaluminum (TMA) on the 2DEG properties is studied. The 2DEG effective mass and sheet density are determined tobe in the range of 0.30-0.32m0 and 4.3-5.5×1012 cm–2, respectively. The 2DEG effective mass parameters are found to be higher than the bulk effective mass of GaN, which is discussed in view of 2DEG confinement. It is shown that exposure to TMA flow improves the 2DEG mobility from 2000 cm2/Vs to values above 2200 cm2/Vs. A record mobility of 2332±61 cm2/Vs is determined for the sample with GaN interface exposed to TMA for 30 s. This improvement in mobility is suggested to be due to AlGaN/GaN interface sharpening causing the reduction of interface roughness scattering of electrons in the 2DEG.

    Place, publisher, year, edition, pages
    Wiley-VCH Verlagsgesellschaft, 2016
    Series
    Physica Status Solidi C-Current Topics in Solid State Physics, ISSN 1862-6351
    Keyword
    AlGaN/GaN HEMTs, THz ellipsometry, 2DEG properties, THz optical Hall effect
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-133135 (URN)10.1002/pssc.201510214 (DOI)000387957200045 ()
    Conference
    11th International Conference on Nitride Semiconductors (ICNS), Beijing, China, August 30-September 4. 2015
    Available from: 2016-12-12 Created: 2016-12-09 Last updated: 2017-10-23Bibliographically approved
  • 18.
    Armakavicius, Nerijus
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Bouhafs, Chamseddine
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Kühne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Knight, Sean
    Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, USA.
    Hofmann, Tino
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, USA / Department of Physics and Optical Science, University of North Carolina at Charlotte, USA.
    Schubert, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, USA.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Cavity-enhanced optical Hall effect in epitaxial graphene detected at terahertz frequencies2017In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 421, 357-360 p.Article in journal (Refereed)
    Abstract [en]

    Cavity-enhanced optical Hall effect at terahertz (THz) frequencies is employed to determine the free charge carrier properties in epitaxial graphene (EG) with different number of layers grown by high-temperature sublimation on 4H-SiC(0001). We find that one monolayer (ML) EG possesses p-type conductivity with a free hole concentration in the low 1012 cmᅵᅵᅵ2 range and a free hole mobility parameter as high as 1550 cm2/Vs. We also find that 6 ML EG shows n-type doping behavior with a much lower free electron mobility parameter of 470 cm2/Vs and an order of magnitude higher free electron density in the low 1013 cmᅵᅵᅵ2 range. The observed differences are discussed. The cavity-enhanced THz optical Hall effect is demonstrated to be an excellent tool for contactless access to the type of free charge carriers and their properties in two-dimensional materials such as EG.

  • 19.
    Armakavicius, Nerijus
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Chen, Jr-Tai
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Hofmann, Tino
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, USA.
    Knight, Sean
    Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, USA.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Nilsson, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Forsberg, Urban
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Properties of two-dimensional electron gas in AlGaN/GaN HEMT structures determined by cavity-enhanced THz optical Hall effect2016In: Physica Status Solidi C-Current Topics in Solid State Physics, Vol 13 No 5-6, Wiley-VCH Verlagsgesellschaft, 2016, Vol. 13, no 5-6, 369-373 p.Conference paper (Refereed)
    Abstract [en]

    In this work we employ terahertz (THz) ellipsometry to determine two-dimensional electron gas (2DEG) density, mobility and effective mass in AlGaN/GaN high electron mobility transistor structures grown on 4H-SiC substrates. The effect of the GaN interface exposure to low-flow-rate trimethylaluminum (TMA) on the 2DEG properties is studied. The 2DEG effective mass and sheet density are determined tobe in the range of 0.30-0.32m0 and 4.3-5.5×1012 cm–2, respectively. The 2DEG effective mass parameters are found to be higher than the bulk effective mass of GaN, which is discussed in view of 2DEG confinement. It is shown that exposure to TMA flow improves the 2DEG mobility from 2000 cm2/Vs to values above 2200 cm2/Vs. A record mobility of 2332±61 cm2/Vs is determined for the sample with GaN interface exposed to TMA for 30 s. This improvement in mobility is suggested to be due to AlGaN/GaN interface sharpening causing the reduction of interface roughness scattering of electrons in the 2DEG.

  • 20.
    Armiento, Rickard
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Kozinsky, Boris
    Research and Technology Center, Robert Bosch LLC, Cambridge, Massachusetts, USA.
    Hautier, Geoffroy
    Université catholique de Louvain, Belgium.
    Fornari, Marco
    Central Michigan University, Mount Pleasant, Michigan, USA.
    Ceder, Gerbrand
    Massachusetts Institute of Technology, Cambridge, USA.
    High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability2014In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, no 13, 134103- p.Article in journal (Refereed)
    Abstract [en]

    We screen a large chemical space of perovskite alloys for systems with optimal properties to accommodate a morphotropic phase boundary (MPB) in their composition-temperature phase diagram, a crucial feature for high piezoelectric performance. We start from alloy end points previously identified in a high-throughput computational search. An interpolation scheme is used to estimate the relative energies between different perovskite distortions for alloy compositions with a minimum of computational effort. Suggested alloys are further screened for thermodynamic stability. The screening identifies alloy systems already known to host an MPB and suggests a few others that may be promising candidates for future experiments. Our method of investigation may be extended to other perovskite systems, e.g., (oxy-)nitrides, and provides a useful methodology for any application of high-throughput screening of isovalent alloy systems.

  • 21.
    Armiento, Rickard
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Kümmel, Stephan
    Theoretische Physik IV, Universität Bayreuth, Bayreuth, Germany.
    Orbital Localization, Charge Transfer, and Band Gaps in Semilocal Density-Functional Theory2013In: Physical Review Letters, ISSN 0031-9007, Vol. 111, no 3, 036402-1-036402-5 p.Article in journal (Refereed)
    Abstract [en]

    We derive an exchange energy functional of generalized gradient form with a corresponding potential that changes discontinuously at integer particle numbers. The functional is semilocal, yet incorporates key features that are connected to the derivative discontinuity of Kohn-Sham density-functional theory. We validate our construction for several paradigm systems and explain how it addresses central well-known deficiencies of antecedent semilocal methods, i.e., the description of charge transfer, properly localized orbitals, and band gaps. We find, e.g., an improved shell structure for atoms, eigenvalues that more closely correspond to ionization energies, and an improved description of band structure where localized states are lowered in energy.

  • 22.
    Arwin, Hans
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Fernández del Río, Lia
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Comparison and analysis of Mueller-matrix spectra from exoskeletons of blue, green and red Cetonia aurata2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 571, 739-743 p.Article in journal (Refereed)
    Abstract [en]

    The exoskeleton, also called the cuticle, of specimens of the scarab beetle Cetonia aurata is a narrow-band reflector which exhibits metallic shine. Most specimens of C. aurata have a reflectance maximum in the green part of the spectrum but variations from blue–green to red–green are also found. A few specimens are also more distinct blue or red. Furthermore, the reflected light is highly polarized and at near-normal incidence near-circular left-handed polarization is observed. The polarization and color phenomena are caused by a nanostructure in the cuticle. This nanostructure can be modeled as a multilayered twisted biaxial layer from which reflection properties can be calculated. Specifically we calculate the cuticle Mueller matrix which then is fitted to Mueller matrices determined by dual-rotating compensator ellipsometry in the spectral range 400–800 nm at multiple angles of incidence. This non-linear regression analysis provides structural parameters like pitch of the chiral structure as well as layer refractive index data for the different layers in the cuticle. The objective here is to compare spectra measured on C. aurata with different colors and develop a generic structural model. Generally the degree of polarization is large in the spectral region corresponding to the color of the cuticle which for the blue specimen is 400–600 nm whereas for the red specimen it is 530–730 nm. In these spectral ranges, the Mueller-matrix element m41 is non-zero and negative, in particular for small angles of incidence, implicating that the reflected light becomes near-circularly polarizedwith an ellipticity angle in the range 20°–45°.

  • 23.
    Asada, Satoshi
    et al.
    Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, Japan.
    Kimoto, Tsunenobu
    Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, Japan.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Calibration on wide-ranging aluminum doping concentrations by photoluminescence in high-quality uncompensated p-type 4H-SiC2017In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 111, no 7, 072101Article in journal (Refereed)
    Abstract [en]

    Previous work has shown that the concentration of shallow dopants in a semiconductor can be estimated from the photoluminescence (PL) spectrum by comparing the intensity of the bound-to-the- dopant exciton emission to that of the free exciton. In this work, we study the low-temperature PL of high-quality uncompensated Al-doped p-type 4H-SiC and propose algorithms for determining the Al-doping concentration using the ratio of the Al-bound to free-exciton emission. We use three different cryogenic temperatures (2, 41, and 79 K) in order to cover the Al-doping range from mid 10(14) cm(-3) up to 10(18) cm(-3). The Al-bound exciton no-phonon lines and the strongest free-exciton replica are used as a measure of the bound-and free-exciton emissions at a given temperature, and clear linear relationships are obtained between their ratio and the Al-concentration at 2, 41, and 79 K. Since nitrogen is a common unintentional donor dopant in SiC, we also discuss the criteria allowing one to determine from the PL spectra whether a sample can be considered as uncompensated or not. Thus, the low-temperature PL provides a convenient non-destructive tool for the evaluation of the Al concentration in 4H-SiC, which probes the concentration locally and, therefore, can also be used for mapping the doping homogeneity. Published by AIP Publishing.

  • 24.
    Asadi, Kamal
    et al.
    Philips Research Labs, Netherlands.
    Li, Mengyuan
    University of Groningen, Netherlands.
    Blom, Paul W. M.
    University of Groningen, Netherlands; Holst Centre, Netherlands.
    Kemerink, Martijn
    Eindhoven University of Technology, Netherlands.
    de Leeuw, Dago M.
    Philips Research Labs, Netherlands; University of Groningen, Netherlands.
    Organic ferroelectric opto-electronic memories2011In: Materials Today, ISSN 1369-7021, E-ISSN 1873-4103, Vol. 14, no 12, 592-599 p.Article, review/survey (Refereed)
    Abstract [en]

    Organic electronics have emerged as a promising technology for large-area micro-electronic applications, such as rollable displays(1), electronic paper(2), contactless identification transponders(3,4), and smart labels(5). Most of these applications require memory functions; preferably a non-volatile memory that retains its data when the power is turned off, and that can be programmed, erased, and read-out electrically.

  • 25.
    Asker, Christian
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Effects of disorder in metallic systems from First-Principles calculations2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, quantum-mechanical calculations within density-functional theory on metallic systems are presented. The overarching goal has been to investigate effects of disorder. In particular, one of the properties investigated is the bindingenergy shifts for core electrons in binary alloys using different theoretical methods. These methods are compared with each other and with experimental results. One such method, the so-called Slater-Janak transition state method relies on the assumption that the single-particle eigenvalues within density-functional theory are linear functions of their respective occupation number. This assumption is investigated and it is found that while the eigenvalues to a first approximation show linear behavior, there are also nonlinearities which can influence the core-level binding energy shifts.

    Another area of investigation has been iron based alloys at pressures corresponding to those in the Earth’s inner core. This has been done for the hexagonal close packed and face entered cubic structures. The effects of alloying iron with magnesium and nickel on the equation of state as well on the elastic properties have been investigated. The calculations have shown that the hexagonal close packed structure in FeNi is more isotropic than the face-centered cubic structure, and that adding Mg to Fe has a large impact on the elastic properties.

    Finally, the effects of disorder due to thermal motion of the atoms have been investigated through ab-initio molecular dynamics simulations. Within the limits of this method and the setup, it is found that the face-centered cubic structure of molybdenum can be dynamically stabilized at high temperature, leading to a metastable structure, on the average. The dynamical stabilization of face-centered cubic molybdenum also rendered it possible to accurately calculate the lattice stability relative to the body-centered cubic phase. Inclusion of temperature effects for the lattice stability using ab-initio molecular dynamics simulations resolves the disagreement between ab-initio calculations and thermochemical methods.

    List of papers
    1. Core-level shifts in fcc random alloys: A first-principles approach
    Open this publication in new window or tab >>Core-level shifts in fcc random alloys: A first-principles approach
    Show others...
    2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 72, no 6, 064203- p.Article in journal (Refereed) Published
    Abstract [en]

    First-principles theoretical calculations of the core-level binding-energy shift (CLS) for eight binary face-centered-cubic (fcc) disordered alloys, CuPd, AgPd, CuNi, NiPd, CuAu, PdAu, CuPt, and NiPt, are carried out within density-functional theory (DFT) using the coherent potential approximation. The shifts of the Cu and Ni 2p3∕2, Ag and Pd 3d5∕2, and Pt and Au 4f7∕2 core levels are calculated according to the complete screening picture, which includes both initial-state (core-electron energy eigenvalue) and final-state (core-hole screening) effects in the same scheme. The results are compared with available experimental data, and the agreement is shown to be good. The CLSs are analyzed in terms of initial- and final-state effects. We also compare the complete screening picture with the CLS obtained by the transition-state method, and find very good agreement between these two alternative approaches for the calculations within the DFT. In addition the sensitivity of the CLS to relativistic and magnetic effects is studied.

    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-12565 (URN)10.1103/PhysRevB.72.064203 (DOI)
    Note

    Original publication: W. Olovsson, C. Göransson, L. V. Pourovskii, B. Johansson and I. A. Abrikosov, Core-level shifts in fcc random alloys: A first-principles approach, 2005, Physical Review B, (72), 064203. Copyright: The America Physical Society, http://prb.aps.org/

    Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2013-11-14
    2. Numerical investigation of the validity of the Slater-Janak transition-state model in metallic systems
    Open this publication in new window or tab >>Numerical investigation of the validity of the Slater-Janak transition-state model in metallic systems
    2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 72, no 13Article in journal (Refereed) Published
    Abstract [en]

    According to the so-called Janak’s theorem, the eigenstates of the Kohn-Sham Hamiltonian are given by the derivative of the total energy with respect to the occupation numbers of the corresponding one-electron states. The linear dependence of the Kohn-Sham eigenvalues on the occupation numbers is often assumed in order to use the Janak’s theorem in applications, for instance, in calculations of the core-level shifts in materials by means of the Slater-Janak transition state model. In this work first-principles density-functional theory calculations using noninteger occupation numbers for different core states in 24 different random alloy systems were carried out in order to verify the assumptions of linearity. It is found that, to a first approximation, the Kohn-Sham eigenvalues show a linear behavior as a function of the occupation numbers. However, it is also found that deviations from linearity have observable effects on the core-level shifts for some systems. A way to reduce the error with minimal increase of computational efforts is suggested.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-12559 (URN)10.1103/PhysRevB.72.134203 (DOI)
    Note

    Original publication: C. Göransson, W. Olovsson and I. A. Abrikosov, Numerical investigation of the validity of the Slater-Janak transition-state model in metallic systems, 2005, Physical Review B, (72), 134203. Copyright: The America Physical Society, http://prb.aps.org/

    Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2013-11-14
    3. Core-level shifts in complex metallic systems from first principle
    Open this publication in new window or tab >>Core-level shifts in complex metallic systems from first principle
    2006 (English)In: Physica status solidi. B, Basic research, ISSN 0370-1972, Vol. 243, no 11, 2447-2464 p.Article in journal (Refereed) Published
    Abstract [en]

    We show that core-level binding energy shifts (CLS) can be reliably calculated within density functional theory. The scheme includes both the initial (electron energy eigenvalue) as well as final state (relaxation due to core-hole screening) effects in the same framework. The results include CLS as a function of composition in substitutional random bulk and surface alloys. Sensitivity of the CLS to the local chemical environment in the bulk and at the surface is demonstrated. A possibility to use the CLS for structural determination is discussed. Finally, an extension of the model is made for Auger kinetic energy shift calculations.

    Place, publisher, year, edition, pages
    Wiley, 2006
    Keyword
    71.15.-m, 71.23.-k, 79.20.Fv, 79.60.Dp, 79.60.Ht, 79.60.Jv
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-37239 (URN)10.1002/pssb.200642165 (DOI)34061 (Local ID)34061 (Archive number)34061 (OAI)
    Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2013-11-14
    4. Elastic properties of Fe–Mn random alloys studied by ab initio calculations
    Open this publication in new window or tab >>Elastic properties of Fe–Mn random alloys studied by ab initio calculations
    Show others...
    2007 (English)In: Applied Physics Letters, ISSN 0003-6951, Vol. 91, no 19, 191904- p.Article in journal (Refereed) Published
    Abstract [en]

    We have studied the influence of the Mn content on the elastic properties of Fe–Mn random alloys (space group of Fmm) using ab initio calculations. The magnetic effects in Fe–Mn alloys have a strong influence on the elastic properties, even above the Néel temperature. As the Mn content is increased from 5  to  40  at.  %, the C44 elastic constant is unaffected, while C11 and C12 decrease. This behavior can be understood based on the magnetovolume effect which softens the lattice. Since the amplitude of local magnetic moments is less sensitive to volume conserving distortions, the softening is not present during shearing.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-12567 (URN)10.1063/1.2807677 (DOI)
    Note
    Original publication: Denis Music, Tetsuya Takahashi, Levente Vitos, Christian Asker, Igor A. Abrikosov and Jochen M. Schneider, Elastic properties of Fe–Mn random alloys studied by ab initio calculations, 2007, Applied Physics Letters, (91), 191904. Copyright: The America Institute of Physics, http://www.aip.org/ Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2013-06-12
    5. First-principles solution to the problem of Mo lattice stability
    Open this publication in new window or tab >>First-principles solution to the problem of Mo lattice stability
    2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 77, no 220102(R)Article in journal (Refereed) Published
    Abstract [en]

    The energy differences between the ground state body-centered structure and closed-packed face-centered structure for transition metals in the middle of the series show unusually large disagreements when they are obtained by the thermochemical approach based on the analysis of experimental data or by first-principles electronic structure calculations. Considering a typical example, the lattice stability of Mo, we present a solution to this long-standing problem. We carry out ab initio molecular dynamics simulations for the two phases at high temperature and show that the configurational energy difference approaches the value derived by means of the thermochemical approach. The main contribution to the effect comes from the modification of the canonical band structure due to anharmonic thermal motion at high temperature.

     

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-12560 (URN)10.1103/PhysRevB.77.220102 (DOI)
    Note
    Original publication: C. Asker, A. B. Belonoshko, A. S. Mikhaylushkin and I. A. Abrikosov, First-principles solution to the problem of Mo lattice stability, 2008, Physical Review B, (77), 220102(R). Copyright: The America Physical Society, http://prb.aps.org/Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2012-07-05
    6. Elastic constants and anisotropy in FeNi alloys at high pressures from first-principles calculations
    Open this publication in new window or tab >>Elastic constants and anisotropy in FeNi alloys at high pressures from first-principles calculations
    2009 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, Vol. 79, no 21, 214112- p.Article in journal (Refereed) Published
    Abstract [en]

    The single-crystal and polycrystalline elastic constants and the elastic anisotropy in face-centered cubic and hexagonal close-packed FeNi alloys have been investigated at ultrahigh pressures by means of first-principles calculations using the exact muffin-tin orbitals method and the coherent-potential approximation. Comparisons with earlier calculations for pure Fe and experimental results are presented and discussed. We show that Ni alloying into Fe increases slightly the density and has very little effect on bulk moduli. Moreover, the relative decrease in c(44) elastic constant is much stronger in the hcp phase than in the fcc one. It is found that the elastic anisotropy is higher for face-centered cubic than for the hexagonal close-packed structure of FeNi, even though the face-centered cubic phase has a higher degree of symmetry. The anisotropy in face-centered cubic structure decreases with increasing nickel concentration while a very weak increase is observed for the hexagonal close-packed structure.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20159 (URN)10.1103/PhysRevB.79.214112 (DOI)
    Available from: 2009-09-01 Created: 2009-08-31 Last updated: 2010-02-11
    7. Equation of state and elastic properties of face-centered cubic FeMg alloy at ultrahigh pressures from first-principles
    Open this publication in new window or tab >>Equation of state and elastic properties of face-centered cubic FeMg alloy at ultrahigh pressures from first-principles
    2010 (English)In: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 293, no 1-2, 130-134 p.Article in journal (Refereed) Published
    Abstract [en]

    We have ca1culated the equation of state and elastic properties of face-centered cubic Fe and Fe-rich FeMg alloy at ultrahigh pressures from first principles using the Exact Muffin-Tin Orbitals method. The results show that adding Mg into Fe influences strongly the equation of state, and cause a large degree of softening of the elastic constants, even at concentrations as small as 1-2 at. %. Moreover, the e1astic anisotropy increases, and the effect is higher at higher pressures.

    Keyword
    Ab initio, Elasticity, equation of state, iron, magnesium, Earths inner core, Pressure
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-53906 (URN)10.1016/j.epsl.2010.02.032 (DOI)000277217100013 ()
    Note
    Original Publication: Christian Asker, U. Kargén, L. Dubrovinsky and Igor Abrikosov, Equation of state and elastic properties of face-centered cubic FeMg alloy at ultrahigh pressures from first-principles, 2010, Earth and Planetary Science Letters, (293), 1-2, 130-134. http://dx.doi.org/10.1016/j.epsl.2010.02.032 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/ Available from: 2010-02-11 Created: 2010-02-11 Last updated: 2011-03-23
    8. Electronic and atomic structure of Mo from high-temperature molecular dynamics simulations
    Open this publication in new window or tab >>Electronic and atomic structure of Mo from high-temperature molecular dynamics simulations
    (English)Manuscript (preprint) (Other (popular science, discussion, etc.))
    Abstract [en]

    By means of ab initio molecular dynamics (AIMD) simulations we carry out a detailed stdly of the electronic and atomic structure of Mo upon the thermal stabilization of its dynamically unstable face-centered cubic (fcc) phase, Wc calculate how the atomic positions, radial distribution function, and the ei<xtronic density of states of fcc Mo evolve with temperature. The results are compared with those for dynamically stable body-centered cubic (bcc) phase of Mo, as well as with bcc Zr, which is dynamically unstable at T = OK, but (in contrast to fcc Mo) becomes thermodynamically stable at high temperature, In particular, wc emphasize the difference between the local positions of atoms in the simulation boxes at a particular step of AIMD simulation and the average positions, around which the atoms vibrate, and show that the former are solcly responsible for the electronic properties of the material. WE observe that while the average atomic positions in fcc Mo correspond perfectly to the ideal structure at high temperature, the electronic structure of the metal calculated from AIMD differs substantially from the canonical shape of the density of states for the ideal fcc crystaL From a comparison of our results obtained for fcc Mo arid bcc Zr, we advocate the use of the electronic structure calculations, complemented with studies of radial distribution functions, as a sensitive test of a degree of the temperature induced stabilization of phases, which are dynamically unstable at T = OK.

    Identifiers
    urn:nbn:se:liu:diva-53779 (URN)
    Available from: 2010-02-03 Created: 2010-02-03 Last updated: 2010-02-11
  • 26.
    Atlasow, Kirill A.
    et al.
    Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Physics of Nanostructures, CH-1015 Lausanne, Switzerland.
    Calic, Milan
    Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Physics of Nanostructures, CH-1015 Lausanne, Switzerland.
    Karlsson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology. Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Physics of Nanostructures, CH-1015 Lausanne, Switzerland.
    Gallo, Pascal
    Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Physics of Nanostructures, CH-1015 Lausanne, Switzerland.
    Rudra, Alok
    n/Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Physics of Nanostructures, CH-1015 Lausanne, Switzerland.
    Dwir, Benjamin
    Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Physics of Nanostructures, CH-1015 Lausanne, Switzerland.
    Kapon, Eli
    Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Physics of Nanostructures, CH-1015 Lausanne, Switzerland.
    Photonic-crystal microcavity laser with site-controlled quantum-wire active medium2009In: Optics Express, ISSN 1094-4087, Vol. 17, no 20, 18178-18183 p.Article in journal (Refereed)
    Abstract [en]

    Site-controlled quantum-wire photonic-crystal microcavity laser is experimentally demonstrated using optical pumping. The single-mode lasing and threshold are established based on the transient laser response, linewidth narrowing, and the details of the non-linear power input-output charateristics. Average-power threshold as low as ~240 nW (absorbed power) and spontaneous emission coupling coefficient β~0.3 are derived.

  • 27.
    Atxabal, Ainhoa
    et al.
    CIC NanoGUNE, Spain.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Arnold, Thorsten
    Technical University of Dresden, Germany.
    Sun, Xiangnan
    National Centre Nanosci and Technology, Peoples R China.
    Parui, Subir
    CIC NanoGUNE, Spain.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Gozalvez, Cristian
    University of Basque Country UPV EHU, Spain.
    Llopis, Roger
    CIC NanoGUNE, Spain.
    Mateo-Alonso, Aurelio
    University of Basque Country UPV EHU, Spain; Basque Fdn Science, Spain.
    Casanova, Felix
    CIC NanoGUNE, Spain; Basque Fdn Science, Spain.
    Ortmann, Frank
    Technical University of Dresden, Germany.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Hueso, Luis E.
    CIC NanoGUNE, Spain; Basque Fdn Science, Spain.
    Energy Level Alignment at Metal/Solution-Processed Organic Semiconductor Interfaces2017In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 29, no 19, 1606901Article in journal (Refereed)
    Abstract [en]

    Energy barriers between the metal Fermi energy and the molecular levels of organic semiconductor devoted to charge transport play a fundamental role in the performance of organic electronic devices. Typically, techniques such as electron photoemission spectroscopy, Kelvin probe measurements, and in-device hot-electron spectroscopy have been applied to study these interfacial energy barriers. However, so far there has not been any direct method available for the determination of energy barriers at metal interfaces with n-type polymeric semiconductors. This study measures and compares metal/solution-processed electron-transporting polymer interface energy barriers by in-device hot-electron spectroscopy and ultraviolet photoemission spectroscopy. It not only demonstrates in-device hot-electron spectroscopy as a direct and reliable technique for these studies but also brings it closer to technological applications by working ex situ under ambient conditions. Moreover, this study determines that the contamination layer coming from air exposure does not play any significant role on the energy barrier alignment for charge transport. The theoretical model developed for this work confirms all the experimental observations.

  • 28.
    Azam, Sher
    Linköping University, Department of Physics, Chemistry and Biology, Materials Science . Linköping University, The Institute of Technology.
    Microwave Power Devices and Amplifiers for Radars and Communication Systems2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    SiC MESFETs and GaN HEMTs posses an enormous potential in power amplifiers at microwave frequencies due to their wide bandgap features of high electric field strength, high electron saturation velocity and high operating temperature. The high power density combined with the comparably high impedance attainable by these devices also offers new possibilities for wideband power microwave systems. Similarly Si-LDMOS being low cost and lonely silicon based RF power transistor has great contributions especially in the communication sector.

    The focus of this thesis work is both device study and their application in different classes of power amplifiers. In the first part of our research work, we studied the performance of transistors in device simulation using physical transistor structure in Technology Computer Aided Design (TCAD). A comparison between the physical simulations and measured device characteristics has been carried out.  We optimized GaN HEMT, Si-LDMOS and enhanced version of our previously fabricated and tested SiC MESFET transistor for enhanced RF and DC characteristics. For large signal AC performance we further extended the computational load pull (CLP) simulation technique to study the switching response of the power transistors. The beauty of our techniques is that, we need no lumped or distributive matching networks to study active device behavior in almost all major classes of power amplifiers. Using these techniques, we studied class A, AB, pulse input class-C and class-F switching response of SiC MESFET. We obtained maximum PAE of 78.3 % with power density of 2.5 W/mm for class C and 84 % for class F power amplifier at 500 MHz. The Si-LDMOS has a vital role and is a strong competitor to wideband gap semiconductor technology in communication sector. We also studied Si-LDMOS (transistor structure provided by Infineon Technologies at Kista, Stockholm) for improved DC and RF performance. The interface charges between the oxide and RESURF region are used not only to improve DC drain current and RF power, gain & efficiency but also enhance its operating frequency up to 4 GHz.

    In the second part of our research work, six single stage (using single transistor) power amplifiers have been designed, fabricated and characterized in three phases for applications in communications, Phased Array Radars and EW systems. In the first phase, two class AB power amplifiers are designed and fabricated. The first PA (26 W) is designed and fabricated at 200-500 MHz using SiC MESFET. Typical results for this PA at 60 V drain bias at 500 MHz are, 24.9 dB of power gain, 44.15 dBm output power (26 W) and 66 % PAE. The second PA is designed at 30-100 MHz using SiC MESFET. At 60 V drain bias Pmax is 46.7 dBm (~47 W) with a power gain of 21 dB.

    In the second phase, for performance comparison, three broadband class AB power amplifiers are designed and fabricated at 0.7-1.8 GHz using SiC MESFET and two different GaN HEMT technologies (GaN HEMT on SiC and GaN HEMT on Silicon substrate). The measured maximum output power for the SiC MESFET amplifier at a drain bias of Vd= 66 V at 700 MHz the Pmax was 42.2 dBm (~16.6 W) with a PAE of 34.4 %. The results for GaN HEMT on SiC amplifier are; maximum output power at Vd = 48 V is 40 dBm (~10 W), with a PAE of 34 % and a power gain above 10 dB. The maximum output power for GaN HEMT on Si amplifier is 42.5 dBm (~18 W) with a maximum PAE of 39 % and a gain of 19.5 dB.

    In the third phase, a high power single stage class E power amplifier is implemented with lumped elements at 0.89-1.02 GHz using Silicon GaN HEMT as an active device. The maximum drain efficiency (DE) and PAE of 67 and 65 % respectively is obtained with a maximum output power of 42.2 dBm (~ 17 W) and a maximum power gain of 15 dB.

    List of papers
    1. Pulse Input Class-C Power Amplifier Response of SiC MESFET using Physical Transistor Structure in TCAD
    Open this publication in new window or tab >>Pulse Input Class-C Power Amplifier Response of SiC MESFET using Physical Transistor Structure in TCAD
    2008 (English)In: Solid-State Electronics, ISSN 0038-1101, Vol. 52, no 5, 740-744 p.Article in journal (Refereed) Published
    Abstract [en]

    The switching behavior of a previously fabricated and tested SiC transistor is studied in Class-C amplifier in TCAD simulation. The transistor is simulated for pulse input signals in Class-C power amplifier. The simulated gain (dB), power density (W/mm) and power added efficiency (PAE%) at 500 MHz, 1, 2 and 3 GHz was studied using computational TCAD load pull simulation technique. A Maximum PAE of 77.8% at 500 MHz with 45.4 dB power gain and power density of 2.43 W/mm is achieved. This technique allows the prediction of switching response of the device for switching amplifier Classes (Class-C–F) before undertaking an expensive and time consuming device fabrication. The beauty of this technique is that, we need no matching and other lumped element networks for studying the large signal behavior of RF and microwave transistors.

    Keyword
    Pulse, Class-C, Power amplifier, New technique, Silicon carbide, MESFET
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-13285 (URN)10.1016/j.sse.2007.09.022 (DOI)
    Available from: 2008-05-13 Created: 2008-05-13 Last updated: 2009-09-24Bibliographically approved
    2. High Power, High Efficiency SiC Power Amplifier for Phased ArrayRadar and VHF Applications
    Open this publication in new window or tab >>High Power, High Efficiency SiC Power Amplifier for Phased ArrayRadar and VHF Applications
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Wide band gap semiconductor (SiC & GaN) based power amplifiers offer severalsystem critical advantages such as less current leakage, better stability at high temperatureand easier impedance matching. This paper describes the design and fabrication of a singlestageclass-AB power amplifier for 30 to 100 MHz using SiC Schottky gate MetalSemiconductor Field Effect Transistor (MESFET). The maximum output power achieved is46.2 dBm (~42 W) at 50 V DC supply voltage at the drain. The maximum power gain is 21dB and a maximum PAE of 62 %. The amplifier performance was also checked at a higherdrain bias of 60 V at 50 MHz. At this bias voltage the maximum output power was 46.7dBm (~47 W) with a power gain of 21 dB and a maximum PAE of 42.7 %. An averageOIP3 of 54 dBm have been achieved for this amplifier.

    Keyword
    Power Amplifier, Phased Array Radar, VHF, Silicon Carbide and MESFET.
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20862 (URN)
    Available from: 2009-09-24 Created: 2009-09-24 Last updated: 2010-01-14Bibliographically approved
    3. Single-stage, High Efficiency, 26-Watt power Amplifier using SiC LE-MESFET
    Open this publication in new window or tab >>Single-stage, High Efficiency, 26-Watt power Amplifier using SiC LE-MESFET
    2006 (English)In: Microwave Conference, 2006. APMC 2006. Asia-Pacific December 12-15, 2006, 441-444 p.Conference paper, Published paper (Refereed)
    Abstract [en]

    This paper describes a single-stage 26 W negative feedback power amplifier, covering the frequency range 200-500 MHz using a 6 mm gate width SiC lateral epitaxy MESFET. Typical results at 50 V drain bias for the whole band are, around 22 dB power gain, around 43 dBm output power, minimum power added efficiency at P1 dB is 47% at 200 MHz and maximum 60% at 500 MHz and the IMD3 level at 10 dB back-off from P1 dB is below -45 dBc. The results at 60 V drain bias at 500 MHz are, 24.9 dB power gain, 44.15 dBm output power (26 W) and 66% PAE.

    Keyword
    Schottky gate field effect transistors, feedback, microwave power amplifiers, silicon compounds, SiC, frequency 200 MHz to 500 MHz, lateral epitaxy MESFET, negative feedback, power 26 W, power amplifier, size 6 mm, voltage 50 V
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-13283 (URN)10.1109/APMC.2006.4429458 (DOI)
    Available from: 2008-05-13 Created: 2008-05-13 Last updated: 2009-09-24Bibliographically approved
    4. Broadband Power Amplifier performance of SiC MESFET and CostEffective SiGaN HEMT
    Open this publication in new window or tab >>Broadband Power Amplifier performance of SiC MESFET and CostEffective SiGaN HEMT
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    This paper describes the broadband power amplifier performance of two differentwide band gap technology transistors at 0.7 to 1.8 GHz using cost effective NitronexGaN HEMT on Silicon (Si) and Cree Silicon Carbide MESFET. The measured resultsfor GaN amplifier are; maximum output power at Vd = 28 V is 42.5 dBm (~18 W), amaximum PAE of 39 % and a maximum gain of 19.5 dB is obtained. The measuredmaximum output power for the SiC amplifier at Vd = 48 V was 41.3 dBm (~13.7 W),with a PAE of 32 % and a power gain above 10 dB. At a drain bias of Vd = 66 V at700 MHz for SiC MESFET amplifier the Pmax was 42.2 dBm (~16.6 W) with a PAE of34.4 %.

    Keyword
    Broadband, Power Amplifier, GaN HEMT, Silicon Carbide (SiC), MESFET
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20863 (URN)
    Available from: 2009-09-24 Created: 2009-09-24 Last updated: 2010-01-14Bibliographically approved
    5. Designing, Fabrication and Characterization of Power Amplifiers Based on 10-Watt SiC MESFET & GaN HEMT at Microwave Frequencies
    Open this publication in new window or tab >>Designing, Fabrication and Characterization of Power Amplifiers Based on 10-Watt SiC MESFET & GaN HEMT at Microwave Frequencies
    2008 (English)In: IEEE European Microwave Week, October 10-15, Amsterdam, The Netherlands, 2008, 444-447 p.Conference paper, Published paper (Refereed)
    Abstract [en]

    This paper describes the design, fabrication and measurement of two single-stage class-AB power amplifiers covering the frequency band from 0.7-1.8 GHz using a SiC MESFET and a GaN HEMT. The measured maximum output power for the SiC amplifier at Vd = 48 V was 41.3 dBm (~13.7 W), with a PAE of 32% and a power gain above 10 dB. At a drain bias of Vd= 66 V at 700 MHz the Pmax was 42.2 dBm (~16.6 W) with a PAE of 34.4%. The measured results for GaN amplifier are; maximum output power at Vd = 48 V is 40 dBm (~10 W), with a PAE of 34% and a power gain above 10 dB. The results for SiC amplifier are better than for GaN amplifier for the same 10-W transistor.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-13284 (URN)10.1109/EUMC.2008.4751484 (DOI)
    Available from: 2008-05-13 Created: 2008-05-13 Last updated: 2009-09-24Bibliographically approved
    6. High Power, Single Stage SiGaN HEMT Class EPower Amplifier at GHz Frequencies
    Open this publication in new window or tab >>High Power, Single Stage SiGaN HEMT Class EPower Amplifier at GHz Frequencies
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    A high power single stage class E power amplifier is implemented with lumped elements at 0.89-1.02GHz using Silicon GaN High Electron Mobility Transistor as an active device. The maximum drain efficiency (DE) and power added efficiency (PAE) of 67 and 65 % respectively is obtained with a maximum output power of 42.2 dBm (~ 17 W) and amaximum power gain of 15 dB. We obtained good results at all measured frequencies.

    Keyword
    Class E, PAE, Power Amplifiers, Gallium Nitride, HEMT
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20864 (URN)
    Available from: 2009-09-24 Created: 2009-09-24 Last updated: 2010-04-05Bibliographically approved
    7. A New Load Pull TCAD Simulation Technique for Class D, E & FSwitching Characteristics of Transistors
    Open this publication in new window or tab >>A New Load Pull TCAD Simulation Technique for Class D, E & FSwitching Characteristics of Transistors
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    We have further developed a computational load pull simulation technique inTCAD. It can be used to study the Class-D, E & F switching response of the transistors. Westudied our enhanced version of previously fabricated and tested SiC transistor. Thesimulated Gain (dB), Power density (W/mm), switching loss (W/mm) and power addedefficiency (PAE %) at 500 MHz were studied using this technique. A PAE of 84 % at500MHz with 26 dB Power gain and power density of 2.75 W/mm is achieved. Thistechnique allows the prediction of switching response of the device before undertaking anexpensive and time-consuming device fabrication. The beauty of this technique is that, weneed no matching and other lumped element networks to study the large signal switchingbehavior of RF and microwave transistors.

    Keyword
    Power Amplifier, Silicon Carbide, TCAD, Switching, Technique
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20865 (URN)
    Available from: 2009-09-24 Created: 2009-09-24 Last updated: 2010-01-14Bibliographically approved
    8. Influence of interface state charges on RF performance of LDMOS transistor
    Open this publication in new window or tab >>Influence of interface state charges on RF performance of LDMOS transistor
    Show others...
    2008 (English)In: Solid-State Electronics, ISSN 0038-1101, E-ISSN 1879-2405, Vol. 52, no 7, 1099-1105 p.Article in journal (Refereed) Published
    Abstract [en]

    Si-LDMOS transistor is studied by TCAD simulation for improved RF performance. In LDMOS structure, a low-doped reduced surface field (RESURF) region is used to obtain high breakdown voltage, but it reduces the transistor RF performance due to high on-resistance. The interface charges between oxide and the RESURF region are studied and found to have a strong impact on the transistor performance both in DC and RF. The presence of excess interface state charges at the RESURF region results not only higher DC drain current but also improved RF performance in terms of power, gain and efficiency. The most important achievement is the enhancement of operating frequency and RF output power is obtained well above 1 W/mm up to 4 GHz.

    Place, publisher, year, edition, pages
    Elsevier, 2008
    Keyword
    Semiconductor devices; Interface state charges; Power electronics; Amplifiers; CAD simulations
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20866 (URN)10.1016/j.sse.2008.04.001 (DOI)
    Available from: 2009-09-24 Created: 2009-09-24 Last updated: 2010-11-17Bibliographically approved
    9. Comparison of Two GaN TransistorsTechnology in Broadband Power Amplifiers
    Open this publication in new window or tab >>Comparison of Two GaN TransistorsTechnology in Broadband Power Amplifiers
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    This paper compares the performance of two different GaN technology transistors(GaN HEMT on Silicon substrate (PA1) and GaN on SiC PA2) utilized in two broadbandpower amplifiers at 0.7-1.8 GHz. The study explores the broadband power amplifierpotential of both GaN HEMT technologies for Phased Array Radar (PAR) and electronicswarfare (EW) systems. The measured maximum output power for PA1 is 42.5 dBm(~18 W) with a maximum PAE of 39 % and a gain of 19.5 dB. While the measuredmaximum output power for PA2 is 40 dBm with PAE of 35 % and a power gain slightlyabove 10 dB. We obtained high power, gain, wider band width and unconditionalstability without feedback for amplifier based on GaN HEMT technology fabricated on Sisubstrate.

    Keyword
    Broadband, Power Amplifier, GaN, HEMT and Single-Stage
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20867 (URN)
    Available from: 2009-09-24 Created: 2009-09-24 Last updated: 2010-01-14Bibliographically approved
  • 29.
    Bantikassegn, W.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    Dannetun, Per
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    Salaneck, William R.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Absence of Schottky barrier formation in junctions of Al and polypyrrole-polyelectrolyte polymer complexes1993In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 224, no 2, 232-236 p.Article in journal (Refereed)
    Abstract [en]

    Thin films of conducting polypyrrole doped with large polymeric anions of polystyrene-sulphonate are electrochemically prepared to study the metal/polymer junctions. Aluminium and gold contacts are vacuum deposited to form metal/polymer/gold sandwich structures for current-voltage characterization. Photoelectron spectroscopy, using UV and X-ray photons, is carried out to investigate the possible causes of current limitation in the Al/PPy(PSS) junction.

  • 30.
    Bao, Qinye
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. East China Normal University, Peoples R China.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Li, Yanqing
    Soochow University, Peoples R China.
    Tang, Jianxin
    Soochow University, Peoples R China.
    Duan, Chungang
    East China Normal University, Peoples R China.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 40, 35476-35482 p.Article in journal (Refereed)
    Abstract [en]

    Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of pi-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.

  • 31.
    Bartkowiak, M
    et al.
    University of Trondheim, Norway.
    Münger, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics.
    Chao, Kuong-An
    University of Trondheim, Norway.
    High-Density Expansion for the Spinless Fermion Model III: Green-Functions1990In: International Journal of Modern Physics B, ISSN 0217-9792, Vol. 4, no 13, 2025-2040 p.Article in journal (Refereed)
    Abstract [en]

    The single-particle electron Green's function and the charge-fluctuation Green's function for the spin-polarized fermion lattice gas are calculated within the framework of the high-density expansion up to the first order in 1/z. Violation of some conditions of consistency of diagrammatic perturbation expansion approximation schemes are discussed. Relations between the Green's functions and corresponding approximate free energy are established. Two kinds of approximations for Green's functions for the charge ordered phase are constructed and applied to determine the band structure of the spinless fermion model. The Green's functions for the nonordered phase are used to study the phase diagram of the model for finite temperatures and arbitrary band filling.

     

  • 32.
    Bartosik, M.
    et al.
    TU Wien, Austria.
    Keckes, J.
    University of Leoben, Austria.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Riedl, H.
    TU Wien, Austria.
    Mayrhofer, P. H.
    TU Wien, Austria.
    Interface controlled microstructure evolution in nanolayered thin films2016In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 123, 13-16 p.Article in journal (Refereed)
    Abstract [en]

    X-ray nano-diffraction and transmission electron microscopy were conducted along the thickness of a similar to 4 pm thick CrN/AlN multilayer with continuously increasing AlN layer thicknesses from similar to 1 to 15 nm on similar to 7 nm thick CrN template layers. The experiments reveal coherent growth, large columnar grains extending over several (bi-)layers for thin AlN layer thicknesses below similar to 4 nm. Above similar to 4 nm, the nucleation of the thermodynamically stable wurtzite structured AlN is favored, leading to coherency breakdown and reduction of the overall strains, disrupting the columnar microstructure and limiting the maximum grain size in film growth direction to the layer thickness. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd.

  • 33.
    Beshkova, M.
    et al.
    Bulgarian Academy of Science, Sofia, Bulgaria.
    Zakhariev, Z.
    Bulgarian Academy of Science, Sofia, Bulgaria.
    Abrashev, M. V.
    University of Sofia, Bulgaria.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Postovit, A.
    Institute of Problem Microelectronics Technology and High Purity Materials, Moskow, Russia.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Properties of AlN epitaxial layers on 6H-SiC substrate grown by sublimation in argon, nitrogen, and their mixtures2006In: Materials Science & Engineering: B. Solid-state Materials for Advanced Technology, ISSN 0921-5107, Vol. 129, no 1-3, 228-231 p.Article in journal (Refereed)
    Abstract [en]

    Epitaxial layers of aluminum nitride (AlN) have been grown at temperature 1900 °C on 10 mm × 10 mm 6H-SiC substrate via sublimation-recondensation in RF heated graphite furnace. The source material was polycrystalline sintered AlN. Growth of AlN layers in pure nitrogen, mixed nitrogen/argon and pure argon atmosphere of 50 mbar were compared. A maximum growth rate of about 30 µm/h was achieved in pure nitrogen atmosphere. The surface morphology reflects the hexagonal symmetry of the seed, which is characteristic of an epitaxial growth for samples grown in a pure nitrogen and mixed nitrogen/argon atmosphere. X-ray diffraction (XRD) measurements show very strong and well defined (0 0 0 2) reflection positioned at around 36° in symmetric ?-2? scans. Micro-Raman spectroscopy reveals that the films have a wurtzite structure. Secondary-ion mass spectroscopy (SIMS) results showed a low concentration of carbon incorporation in the AlN layers. This study demonstrates that nitrogen is necessary for the successful epitaxial growth of AlN on 6H-SiC by sublimation. © 2006 Elsevier B.V. All rights reserved.

  • 34.
    Beyer, Franziska
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Pedersen, Henrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Defects in 4H-SiC Layers Grown by Chloride-based Epitaxy2009In: Materials Science Forum Vols. 615-617 / [ed] Amador Pérez-Tomás, Trans Tech Publications , 2009, 373- p.Conference paper (Refereed)
    Abstract [en]

    Chloride-based 4H-SiC epitaxial layers were investigated by DLTS, MCTS and PL. The DLTS spectra of the as grown samples showed dominance of the Z1/2 and the EH6/7 peaks. For growth rates exceeding 100 µm/h, an additional peak occurred in the DLTS spectra which can be assigned to the UT1 defect. The shallow and the deep boron complexes as well as the HS1 defect are observed in MCTS measurements. The PL spectra are completely dominated by the near band gap (NBG) emission. No luminescence from donor-acceptor pair occurred. The PL line related to the D1 centre was weakly observed. In the NBG region nitrogen bound exciton (N-BE) and free exciton (FE) related lines could be seen. The addition of chlorine in the growth process gives the advantage of high growth rates without the introduction of additional defects.

  • 35.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina A
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S.
    Department of Electrical and Computer Engineering, University of California, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Strong room-temperature optical and spin polarization in InAs/GaAs quantum dot structures2011In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 98, no 20, 203110- p.Article in journal (Refereed)
    Abstract [en]

    Room-temperature optical and spin polarization up to 35% is reported in InAs/GaAs quantum dots in zero magnetic field under optical spin injection using continuous-wave optical orientation spectroscopy. The observed strong spin polarization is suggested to be facilitated by a shortened trion lifetime, which constrains electron spin relaxation. Our finding provides experimental demonstration of the highly anticipated capability of semiconductor quantum dots as highly polarized spin/light sources and efficient spin detectors, with efficiency greater than 35% in the studied quantum dots.

  • 36.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina A
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, Suwaree
    UC San Diego, USA.
    Tu, Charles
    UC San Diego, USA.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Spin injection in lateral InAs quantum dot structures by optical orientation spectroscopy2009In: Nanotechnology, ISSN 0957-4484, Vol. 20, no 37, 375401- p.Article in journal (Refereed)
    Abstract [en]

    Optical spin injection is studied in novel laterally-arranged self-assembled InAs/GaAs quantum dot structures, by using optical orientation measurements in combination with tunable laser spectroscopy. It is shown that spins of uncorrelated free carriers are better conserved during the spin injection than the spins of correlated electrons and holes in an exciton. This is attributed to efficient spin relaxation promoted by the electron–hole exchange interaction of the excitons. Our finding suggests that separate carrier injection, such as that employed in electrical spin injection devices, can be advantageous for spin conserving injection. It is also found that the spin injection efficiency decreases for free carriers with high momentum, due to the acceleration of spin relaxation processes.

  • 37.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina A
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, Suwaree
    Dept of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA.
    Tu, Charles W
    Dept of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Efficiency of spin injection in novel InAs quantum dotstructures: exciton vs. free carrier injection2010Conference paper (Refereed)
    Abstract [en]

    Unambiguous experimental evidence for a significant difference in efficiency of excitonic vs. free carrier spin injection is provided in novel laterally arranged self-assembled InAs/GaAs quantum dot structures, from optical orientation and tunable laser spectroscopy. A lower efficiency of exciton spin injection as compared to free carrier spin injection from wetting layers into QDs results in a distinct feature in luminescence polarization of the QDs as a function of excitation photon energy. It is shown that this difference is not related to carrier density and state-filling effects arising from the difference in optical absorption efficiency between the excitons and free carriers. Rather, it is a genuine property for exciton spin injection that suffers stronger spin relaxation due to Coulomb exchange interaction.

  • 38.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Sernelius, Bo E.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Suraprapapich, S
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Strong suppression of spin generation at a Fano resonance in a semiconductor nanostructure2012Manuscript (preprint) (Other academic)
    Abstract [en]

    We observe remarkable, complete suppression of spin generation under optical excitation in a thin InAs/GaAs wetting layer close to the light-hole excitonic resonance, leading to zero electron spin polarization as monitored by adjacent InAs quantum dots. The suppression is attributed to efficient spin relaxation/scattering at the Fano resonance between the light-hole exciton states and the heavy-hole continuum of the wetting layer. The complete suppression is found to remain effective up to temperatures exceeding 100 K.

  • 39.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Hanle effect and electron spin polarization in InAs/GaAs quantum dots up to room temperature2012In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, no 13, 135705- p.Article in journal (Refereed)
    Abstract [en]

    Hanle effect in InAs/GaAs quantum dots (QDs) is studied under optical orientation as a function of temperature over the range of 150-300 K, with the aim to understand the physical mechanism responsible for the observed sharp increase of electron spin polarization with increasing temperature. The deduced spin lifetime Ts of positive trions in the QDs is found to be independent of temperature, and is also insensitive to excitation energy and density. It is argued that the measured Ts is mainly determined by the longitudinal spin flip time (T1) and the spin dephasing time (T2 *) of the studied QD ensemble, of which both are temperatureindependent over the studied temperature range and the latter makes a larger contribution. The observed sharply rising of the QD spin polarization degree with increasing temperature, on the other hand, is shown to be induced by an increase in spin injection efficiency from the barrier/wetting layer and also by a moderate increase in spin detection efficiency of the QD.

  • 40.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Hanle effect in InAs/GaAs quantum dots up to room temperatures2011In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528Article in journal (Refereed)
  • 41.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    InAs/GaAs quantum dots as highly polarized spin and light sources and efficient spin detectors at room temperature.2012Conference paper (Other academic)
  • 42.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C.W.
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Optical spin injection and spin detection in novel InAs quantum dot structures.2011In: Abstract book of the SPIE Microtechnologies, 2011, 8068B-51- p.Conference paper (Other academic)
  • 43.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, Suwaree
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA.
    Tu, Charles
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Free-carriers beat excitons in spin-injection contest2009Other (Other (popular science, discussion, etc.))
    Abstract [en]

    Quantum dots (QDs) are a promising building block for future spin-functional devices with applications in spintronics and quantum information processing. Essential to the success of these devices is the ability to create a desired spin orientation of charge carriers (electrons and holes) in QDs via the injection of spin-polarized carriers. Researchers have now shown that this can be done most efficiently using independent (free) carriers rather than electron-hole pairs (excitons).

  • 44.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Hyperfine-induced spin depolarization and dynamic nuclear polarization in InAs/GaAs quantum dots2012Conference paper (Other academic)
  • 45.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S.
    Department of Electrical and Computer Engineering, University of California, La Jolla, California 92093, USA.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Temperature dependence of dynamic nuclear polarization and its effect on electron spin relaxation and dephasing in InAs/GaAs quantum dots2012In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, no 14, 143105- p.Article in journal (Refereed)
    Abstract [en]

    Electron spin dephasing and relaxation due to hyperfine interaction with nuclear spins is studied in an InAs/GaAs quantum dot ensemble as a function of temperature up to 85 K, in an applied longitudinal magnetic field. The extent of hyperfineinduced dephasing is found to decrease, whereas dynamic nuclear polarization increases with increasing temperature. We attribute both effects to an accelerating electron spin relaxation through phonon-assisted electron-nuclear spin flip-flops driven by hyperfine interactions, which could become the dominating contribution to electron spin depolarization at high temperatures.

  • 46.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Wang, P. H.
    Suraprapapich, S.
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Spin properties in InAs/GaAs quantum dot structures: Invited talk at the Second Int. Conf. on Small Science (ICSS 2012), Orlando, USA, Dec.16-19 2012.2012Conference paper (Other academic)
  • 47.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Wang, P. H.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S.
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Effect of in-plane anisotropy on spin injection efficiency in InAs/GaAs nanostructures revealed in a longitudinal magnetic field2012Conference paper (Other academic)
  • 48.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Wang, P. H.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S
    Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Effects of a longitudinal magnetic field on spin injection and detection in InAs/GaAs quantum dot structures2012In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 24, no 14, 145304- p.Article in journal (Refereed)
    Abstract [en]

    Effects of a longitudinal magnetic field on optical spin injection and detection in InAs/GaAs quantum dot (QD) structures are investigated by optical orientation spectroscopy. An increase in optical and spin polarization of the QDs is observed with increasing magnetic field in the range of 0-2 T, and is attributed to suppression of exciton spin depolarization within the QDs that is promoted by hyperfine interaction and anisotropic electron-hole exchange interaction. This leads to a corresponding enhancement in spin detection efficiency of the QDs by a factor of up to 2.5. At higher magnetic fields when these spin depolarization processes are quenched, electron spin polarization in anisotropic QD structures (such as double QDs that are preferably aligned along a specific crystallographic axis) still exhibits rather strong field dependence under non-resonant excitation. In contrast, such field dependence is practically absent in more "isotropic" QD structures (e.g. single QDs). We attribute the observed effect to stronger electron spin relaxation in the spin injectors (i.e. wetting layer and GaAs barriers) of the lower-symmetry QD structures, which also explains the lower spin injection efficiency observed in these structures.

  • 49.
    Beyer, Jan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Wang, Po-Hsiang
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Buyanova, Irina A
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Suraprapapich, S.
    University of California, USA.
    Tu, C. W.
    University of California, USA.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Quantum dot structures: limiting factors for spintronics2012Other (Other (popular science, discussion, etc.))
    Abstract [en]

    Rich information on the dominant factors limiting spin injection and detection efficiency can be retrieved from optical orientation in a longitudinal magnetic field.

  • 50.
    Bi, Zhaoxia
    et al.
    Solid State Lighting Center, the Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund, Sweden.
    Lindgren, David
    Solid State Lighting Center, the Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund, Sweden.
    Johansson, B. Jonas
    Solid State Lighting Center, the Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund, Sweden.
    Ek, Martin
    Center for Analysis and Synthesis/nCHREM, Lund University, Box 124, 221 00 Lund, Sweden.
    Wallenberg, L. Reine
    Center for Analysis and Synthesis/nCHREM, Lund University, Box 124, 221 00 Lund, Sweden.
    Gustafsson, Anders
    Solid State Lighting Center, the Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund, Sweden.
    Borgström, Magnus T
    Solid State Lighting Center, the Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund, Sweden.
    Ohlsson, Jonas
    QuNano AB, Ideon Science Park, Scheelevägen 17, 223 70 Lund, Sweden.
    Monemar, Bo
    Solid State Lighting Center, the Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund, Sweden.
    Samuelson, Lars
    Solid State Lighting Center, the Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund, Sweden.
    InN quantum dots on GaN nanowires grown by MOVPE2014In: Physica Status Solidi. C, Current topics in solid state physics, ISSN 1610-1634, E-ISSN 1610-1642, Vol. 11, no 3-4, 421-424 p.Article in journal (Refereed)
    Abstract [en]

    In this work, growth of InN quantum dots (QDs) on GaN nanowires (NWs) by metal-organic vapour phase epitaxy is demonstrated, illustrating the feasibility to combine 0D and 1D structures for nitride semiconductors. Selective area growth was used to generate arrays of c-oriented GaN NWs using Si3N4 as the mask material. In general, InN QDs tend to form at the NW edges between the m-plane side facets, but the QD growth can also be tuned to the side facets by controlling the growth temperature and the growth rate. TEM characterization reveals that I1-type stacking faults are formed in the QDs and originate from the misfit dislocations at the InN/GaN interface. Photoluminescence measurement at 4 K shows that the peak shifts to high energy with reduced dot size. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

1234567 1 - 50 of 777
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf