liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 77
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Apaydin, Dogukan H.
    et al.
    Johannes Kepler University of Linz, Austria.
    Gora, Monika
    University of Warsaw, Poland.
    Portenkirchner, Engelbert
    University of Innsbruck, Austria.
    Oppelt, Kerstin T.
    Johannes Kepler University of Linz, Austria.
    Neugebauer, Helmut
    Johannes Kepler University of Linz, Austria.
    Jakesoya, Marie
    Johannes Kepler University of Linz, Austria.
    Glowacki, Eric D.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kunze-Liebhaeuser, Julia
    University of Innsbruck, Austria.
    Zagorska, Malgorzata
    Warsaw University of Technology, Poland.
    Mieczkowski, Jozef
    University of Warsaw, Poland.
    Serdar Sariciftci, Niyazi
    Johannes Kepler University of Linz, Austria.
    Electrochemical Capture and Release of CO2 in Aqueous Electrolytes Using an Organic Semiconductor Electrode2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 15, p. 12919-12923Article in journal (Refereed)
    Abstract [en]

    Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon. capture and utilization technology. Herein we present an approach using an organic. semiconductor electrode to electrochemically capture dissolved CO2 in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7,bis (4-(2- (2-ethylhexyl)thiazol-4-yl)phenyObenzo [lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while, not dissolving or degrading. The reduced NBIT reacts with CO2 to form a stable aemicarbonate salt, which can be subsequently oxidized electrochemically to release CO2. The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO2 capture of similar to 2.3 mmol g(-1). This is on par with the best solution-phase amine chemical capture technologies available today.

  • 2.
    Azharuddin, Mohammad
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Chemistry. Linköping University, Faculty of Medicine and Health Sciences.
    Zhu, Geyunjian H.
    Univ Cambridge, England.
    Das, Debapratim
    Indian Inst Technol Guwahati, India.
    Ozgur, Erdogan
    Hacettepe Univ, Turkey.
    Uzun, Lokman
    Hacettepe Univ, Turkey.
    Turner, Anthony P. F.
    Cranfield Univ, England.
    Patra, Hirak Kumar
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Univ Cambridge, England.
    A repertoire of biomedical applications of noble metal nanoparticles2019In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 55, no 49, p. 6964-6996Article, review/survey (Refereed)
    Abstract [en]

    Noble metals comprise any of several metallic chemical elements that are outstandingly resistant to corrosion and oxidation, even at elevated temperatures. This group is not strictly defined, but the tentative list includes ruthenium, rhodium, palladium, silver, osmium, iridium, platinum and gold, in order of atomic number. The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community and have led to an unprecedented expansion of research and exploration of applications in biotechnology and biomedicine. Noble metal nanomaterials can be synthesised both by top-down and bottom up approaches, as well as via organism-assisted routes, and subsequently modified appropriately for the field of use. Nanoscale analogues of gold, silver, platinum, and palladium in particular, have gained primary importance owing to their excellent intrinsic properties and diversity of applications; they offer unique functional attributes, which are quite unlike the bulk material. Modulation of noble metal nanoparticles in terms of size, shape and surface functionalisation has endowed them with unusual capabilities and manipulation at the chemical level, which can lead to changes in their electrical, chemical, optical, spectral and other intrinsic properties. Such flexibility in multi-functionalisation delivers Ockhams razor to applied biomedical science. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.

    The full text will be freely available from 2020-05-21 00:01
  • 3.
    Bai, Sai
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Univ Oxford, England.
    Da, Peimei
    Univ Oxford, England.
    Li, Cheng
    Univ Bayreuth, Germany; Xiamen Univ, Peoples R China.
    Wang, Zhiping
    Univ Oxford, England.
    Yuan, Zhongcheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fu, Fan
    Empa-Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland.
    Kawecki, Maciej
    Empa, Switzerland; Univ Basel, Switzerland.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Sakai, Nobuya
    Univ Oxford, England.
    Wang, Jacob Tse-Wei
    CSIRO Energy, Australia.
    Huettner, Sven
    Univ Bayreuth, Germany.
    Buecheler, Stephan
    Empa Swiss Fed Labs Mat Sci and Technol, Switzerland.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Univ Oxford, England.
    Snaith, Henry J.
    Univ Oxford, England.
    Planar perovskite solar cells with long-term stability using ionic liquid additives2019In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 571, no 7764, p. 245-250Article in journal (Refereed)
    Abstract [en]

    Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites(5-9), optimizing the interfaces within the device structures(10-13), and using new encapsulation techniques(14,15). However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate(16-18). Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.

  • 4.
    Bao, Qinye
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. East China Normal Univ, Peoples R China; Soochow Univ, Peoples R China.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Li, Yanqing
    Soochow Univ, Peoples R China.
    Tang, Jianxin
    Soochow Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    The Effect of Oxygen Uptake on Charge Injection Barriers in Conjugated Polymer Films2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 7, p. 6491-6497Article in journal (Refereed)
    Abstract [en]

    The energy offset between the electrode Fermi level and organic semiconductor transport levels is a key parameter controlling the charge injection barrier and hence efficiency of organic electronic devices. Here, we systematically explore the effect of in situ oxygen exposure on energetics in n-type conjugated polymer P(NDI2OD-T2) films. The analysis reveals that an interfacial potential step is introduced for a series of P(NDI2OD-T2) electrode contacts, causing a nearly constant downshift of the vacuum level, while the ionization energies versus vacuum level remain constant. These findings are attributed to the establishment of a so-called double-dipole step via motion of charged molecules and will modify the charge injection barriers at electrode contact. We further demonstrate that the same behavior occurs when oxygen interacts with p-type polymer TQ1 films, indicating it is possible to be a universal effect for organic semiconductOrs.

  • 5.
    Ben Dkhil, Sadok
    et al.
    Aix Marseille University, France.
    Gaceur, Meriem
    Aix Marseille University, France.
    Karim Diallo, Abdou
    Aix Marseille University, France.
    Didane, Yahia
    Aix Marseille University, France.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Margeat, Olivier
    Aix Marseille University, France.
    Ackermann, Jorg
    Aix Marseille University, France.
    Videlot-Ackermann, Christine
    Aix Marseille University, France.
    Reduction of Charge-Carrier Recombination at ZnO Polymer Blend Interfaces in PTB7-Based Bulk Heterojunction Solar Cells Using Regular Device Structure: Impact of ZnO Nanoparticle Size and Surfactant2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 20, p. 17257-17265Article in journal (Refereed)
    Abstract [en]

    Cathode interfacial layers, also called electron extraction layers (EELs), based on zinc oxide (ZnO) have been studied in polymer-blend solar cells toward optimization of the opto-electric properties. Bulk heterojunction solar cells based on poly( {4, 8-bis [(2- ethylhexyl) oxy]b enzo [1,2- b :4,5-b dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]- thieno[3,4-b]thiophenediy1}) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) were realized in regular structure with all-solution-processed interlayers. A pair of commercially available surfactants, ethanolamine (EA) and ethylene glycol (EG), were used to modify the surface of ZnO nanoparticles (NPs) in alcohol-based dispersion. The influence of ZnO particle size was also studied by preparing dispersions of two NP diameters (6 versus 11 nm). Here, we show that performance improvement can be obtained in polymer solar cells via the use of solution-processed ZnO EELs based on surface-modified nanoparticles. By the optimizing of the ZnO dispersion, surfactant ratio, and the resulting morphology of EELs, PTB7/PC70BM solar cells with a power-conversion efficiency of 8.2% could be obtained using small sized EG-modified ZnO NPs that allow the clear enhancement of the performance of solution processed photovoltaic devices compared to state-of-the-art ZnO-based cathode layers.

  • 6.
    Bengtsson, Katarina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Electrokinetic devices from polymeric materials2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    There are multiple applications for polymers: our bodies are built of them, plastic bags and boxes used for storage are composed of them, as are the shells for electronics, TVs, computers, clothes etc. Many polymers are cheap, and easy to manufacture and process which make them suitable for disposable systems. The choice of polymer to construct an object will therefore highly influence the properties of the object itself. The focus of this thesis is the application of commonly used polymers to solve some challenges regarding integration of electrodes in electrokinetic devices and 3D printing.

    The first part of this thesis regards electrokinetic systems and the electrodes’ impact on the system. Electrokinetic systems require Faradaic (electrochemical) reactions at the electrodes to maintain an electric field in an electrolyte. The electrochemical reactions at the electrodes allow electron-to-ion transduction at the electrode-electrolyte interface, necessary to drive a current at the applied potential through the system, which thereby either cause flow (electroosmosis) or separation (electrophoresis). These electrochemical reactions at the electrodes, such as water electrolysis, are usually problematic in analytical systems and systems applied in biology. One solution to reduce the impact of water electrolysis is by replacing metal electrodes with electrochemically active polymers, e.g. poly(3,4-ethylenedioxythiophene) (PEDOT). Paper 1 demonstrates that PEDOT electrodes can replace platinum electrodes in a gel electrophoretic setup. Paper 2 reports an all-plastic, planar, flexible electroosmotic pump which continuously transports water from one side to the other using potentials as low as 0.3 V. This electroosmotic pump was further developed in paper 3, where it was made into a compact and modular setup, compatible with commercial microfluidic devices. We demonstrated that the pump could maintain an alternating flow for at least 96 h, with a sufficient flow of cell medium to keep cells alive for the same period of time.

    The second part of the thesis describes the use of 3D printers for manufacturing prototypes and the material requirements for 3D printing. Protruding and over-hanging structures are more challenging to print using a 3D printer and usually require supporting material during the printing process. In paper 4, we showed that polyethylene glycol (PEG), in combination with a carbonate-based plasticizer, functions well as a 3D printable sacrificial template material. PEG2000 with between 20 and 30 wt% dimethyl carbonate or propylene carbonate have good shear-thinning rheology, mechanical and chemical stability, and water solubility, which are advantageous for a supporting material used in 3D printing.

    The advances presented in this thesis have solved some of the challenges regarding electrokinetic systems and prototype manufacturing. Hopefully this will contribute to the development of robust, disposable, low-cost, and autonomous electrokinetic devices.

    List of papers
    1. Conducting Polymer Electrodes for Gel Electrophoresis
    Open this publication in new window or tab >>Conducting Polymer Electrodes for Gel Electrophoresis
    2014 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 2, p. 0089416-Article in journal (Refereed) Published
    Abstract [en]

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

    Place, publisher, year, edition, pages
    Public Library of Science, 2014
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-105901 (URN)10.1371/journal.pone.0089416 (DOI)000331711900141 ()
    Available from: 2014-04-14 Created: 2014-04-12 Last updated: 2017-12-05Bibliographically approved
  • 7.
    Bergner, Sandra
    et al.
    Linköping University, Department of Physics, Chemistry and Biology.
    Nilsson, Sandra
    Linköping University, Department of Physics, Chemistry and Biology.
    Screening of volatile compounds in washing water and cloths from the sponge cloth process2010Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Freudenberg Household Products AB in Norrköping are manufacturer of sponge cloths with the well-known brand names of Wettex® and Vileda®. The production is based on the viscose fiber process and involves a high chemical demand. Recent customer complaints involve a diffuse smell from the cloths that is like a “garage odor” and occurs after a few uses. The company’s theory is that the smell derives from a chemical used in the process called Exxal 9.

    The aim was to screen the washing water from two sections and the cloth before and after wash for the presence of Exxal 9 and other prominent components. The washing water samples consisted of a salt solution from one section and a water condensate from another section. A method to qualitatively and quantitatively examine the production samples was developed. To evaluate the variation over a short period of time, twelve samples were taken during four weeks. The focus for the analysis lay on production line Wx4, but comparisons with two other production lines, Wx7 and SL1, were also made. The method of choice was gas chromatography in combination with two different detectors; mass spectrometer for identification and flame ionization detector for quantification.

    Exxal 9 could be identified in both of the washing water sections but in very various concentrations. At the production line Wx4, the mean concentration in the mother lye was 61.96 µl/l whereas the mean concentration in the condensate was 0.24 µl/l. The comparison between the different production lines showed significant variations, where Wx4 had the highest concentration. In the cloths, Exxal 9 could only be found before it had been washed. The concentration in the cloths was not high enough for quantification. In both the washing waters and cloths, additional unknown peaks were found. Attempts to identify all the unknowns were made but only two compounds were included in the commercial library; 2-ethyl-1-hexanol and 2-(2-butoxyethoxy)-ethanol.

  • 8.
    Bidleman, Terry
    et al.
    Umeå University, Sweden.
    Kurt-Karakus, Perihan
    Bahcesehir University, Istanbul, Turkey.
    Armitage, James
    University of Toronto, Ontario, Canada.
    Brown, Tanya
    University of Victoria, British Columbia, Canada.
    Danon Schaffer, Monica
    University of British Columbia, Vancouver, Canada.
    Helm, Paul
    Ontario Ministry of the Environment, Toronto, Canada.
    Hung, Haley
    Meteorological Services Canada .
    Jantunen, Liisa
    Environment Canada.
    Kylin, Henrik
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Li, Yi-Fan
    Environment, Canada.
    Loock, Daniela
    Royal Military College of Canada.
    Luttmer, Carol
    Royal Military College of Canada.
    Ma, Jianmin
    Lanzhou University, Peoples Republic of China.
    Macdonald, Robie
    Fisheries and Oceans, Canada.
    Mackay, Don
    Trent University, Peterborough, Ontario, Canada.
    Reid, Liisa
    Trent University, Peterborough, Ontario, Canada.
    Reimer, Ken
    Royal Military College of Canada.
    Chapter 2: Properties, sources, global fate and transport2013In: Canadian Arctic Contaminants Assessment Report III 2013: Persistent Organic Pollutants in Canada’ s North / [ed] Derek Muir, Perihan Kurt-Karakus and Peter Stow, Ottawa: Northern Contaminants Program, Aboriginal Affairs and Northern Development Canada , 2013, p. 19-146Chapter in book (Refereed)
    Abstract [en]

    Part II of the second Canadian Arctic Contaminants Assessment Report (CACAR-II) began with a section on “Physicochemical Properties of Persistent Organic Pollutants”, which identified key physicochemical (pchem) properties, provided the rationale for their measurement or prediction and tabulated literature citations for chemicals that are of concern to the NCP (Bidleman et al. 2003). The section also discussed temperature dependence of pchem properties and their applications to describing partitioning in the physical environment.

    There is, and will continue to be, emphasis on predictive approaches to screening chemicals for persistence, bioaccumulation and toxic (PB&T)properties, as well as long-range atmospheric transport (LRAT) potential (Brown and Wania 2008, Czub et al. 2008, Fenner et al. 2005, Gouin andWania 2007, Howard and Muir 2010, Klasmeier et al. 2006, Matthies et al. 2009, Muir and Howard 2006). This has created the need for determining pchem properties of new and emerging chemicals of concern.

    Predicting gas exchange cycles of legacy persistent organic pollutants (POPs) and new and emerging chemicals of concern places a high demand on the accuracy of pchem properties, particularly the air/water partition coefficient, KAW. Hexachlorocyclohexanes (HCHs) in Arctic Ocean surface waters are close to air-water equilibrium, with excursions toward net volatilization or deposition that vary with location and season (Hargrave et al. 1993, Jantunen et al. 2008a, Lohmann et al. 2009, Su et al. 2006, Wong et al. 2011) while hexachlorobenzene (HCB) (Lohmann et al. 2009, Su et al. 2006, Wong et al. 2011) and some current use pesticides (CUPs) (Wong et al. 2011) are undergoing net deposition. The predicted Arctic Contamination Potential (ACP) for persistent organic chemicals is strongly influenced by ice cover due to its effect on air-water gas exchange (Meyer and Wania 2007).

    Many advances have taken place and numerous papers have been published since CACAR-II, which present new measurements and predictions of pchem properties. This section does not attempt to provide a comprehensive review of the field, or to compile pchem properties from the many studies. The approach taken is to highlight the reports which are most relevant to polar science, particularly in areas of improving reliability of pchem properties for POPs, improving experimental techniques and comparing predictive methods. The section ends with a discussion of polyparameter linear free energy relationships (pp-LFERs), which goes beyond partitioning descriptions based on single pchem properties by taking into account specific chemical interactions that can take place in airsurface and water-surface exchange processes. A detailed list of chemical names and nomenclature are provided in the Glossary.

  • 9.
    Björklund, Sam
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Characterization of Inosine triphosphate pyrophosphatase, an important protein involved in purine metabolism2015Independent thesis Basic level (degree of Bachelor), 10,5 credits / 16 HE creditsStudent thesis
    Abstract [en]

    The enzyme inosine triphosphate pyrophosphatase (ITPase) is responsible for controlling the levels of the by-products guanosine monophosphate (GMP) and adenosine monophosphate (AMP) through their precursor inosine monophosphate (IMP). ). Human ITPase consists of a 194-amino acid homodimer which relies upon either an Mg2+ ion or a Mn2+ ion for catalytic activity, and orthologs of this protein have been found in many different organisms.

    The purpose of this project was to try out methods learned throughout the education and to use this knowledge to gather new data about the human protein inosine triphosphate pyrophosphatase (ITPase). The protein was expressed in BL21/DE3 cells from a pre-made vector. Experiments performed during this project include secondary- and tertiary stability measurements, tryptophan fluorescence spectra, binding curve and thermic stability to ITPase with ANS and methotrexate.

    The Tm-value of human ITPase was examined with Trp-Fluorescence, ANS-fluorescence and Near-UV and Far-UV circular dichroism (CD). The stability of ITPase monitored by Near-UV as well as Far-UV coincides, indicating that secondary- and tertiary-unfolding occur simultaneously without any intermediates.

    The results of Trp-fluorescence showed that the tryptophans were already exposed and thus it did not yield a reliable result. The binding properties of ANS and MTX to ITPase were also examined.

  • 10.
    Bouwman, Henk
    et al.
    Nort-West University, South Africa.
    Krátká, M
    Masaryk University, Czech Republic.
    Choong Kwet Yive, Nee Sun
    University of Mauritius, Mauritius.
    Kylin, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Klanova, Jana
    Masaryk University, Czech Republic.
    Do POPs Transfer from Plastic Marine Debris to Coral on Tropical Islands?2014In: Organohalogen Compounds, ISSN 1026-4892, Vol. 76, p. 1352-1355Article in journal (Refereed)
  • 11.
    Bouwman, Hindrik
    et al.
    North-West Uniersity, South AFrica.
    Evans, Steven
    University of Venda, South Africa.
    Cole, Nik
    Durrell Wildlife Conservation Trust, Jersey, Channel Isles, UK.
    Choong Kwer Yive, Nee Sun
    University of Mauritius, Mauritius.
    Kylin, Henrik
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    The flip-or-flop boutique: Marine debris on the shores of St Brandon’s Rock, an isolated tropical atoll in the Indian Ocean2016In: Marine Environmental Research, ISSN 0141-1136, E-ISSN 1879-0291, Vol. 114, p. 58-64Article in journal (Refereed)
    Abstract [en]

    Isolated coral atolls are not immune from marine debris accumulation. We identified Southeast Asia, the Indian sub-continent, and the countries on the Arabian Sea as most probable source areas of 50 000 items on the shores of St. Brandon’s Rock (SBR), Indian Ocean. 79% of the debris was plastics. Flip-flops, energy drink bottles, and compact fluorescent lights (CFLs) were notable item types. The density of debris (0.74 m-1 shore length) is comparable to similar islands but less than mainland sites. Intact CFLs suggests product-facilitated long-range transport of mercury. We suspect that aggregated marine debris, scavenged by the islands from currents and gyres, could re-concentrate pollutants. SBR islets accumulated debris types in different proportions suggesting that many factors act variably on different debris types. Regular cleaning of selected islets will take care of most of the accumulated debris and may improve the ecology and tourism potential. However, arrangements and logistics require more study.

  • 12.
    Boyd, Robert
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Pilch, Iris
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Complex 3D nanocoral like structures formed by copper nanoparticle aggregation on nanostructured zinc oxide rods2016In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 184, p. 127-130Article in journal (Refereed)
    Abstract [en]

    This paper reports a new strategy for nanoparticle surface assembly so that they form anisotropic fibril like features, consisting of particles directly attached to each other, which can extend 500 nm from the surface. The particles are both formed and deposited in a single step process enabled via the use of a pulsed plasma based technique. Using this approach, we have successfully modified zinc oxide rods, up to several hundred nanometers in diameter, with 25 nm diameter copper nanoparticles for catalytic applications. The resulting structure could be modelled using a diffusion limited aggregation based approach. This gives the material the appearance of marine coral, hence the term nanocoral. (C) 2016 Elsevier B.V. All rights reserved.

  • 13.
    Cai, Wanzhu
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Musumeci, Chiara
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ajjan, Fátima
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Bao, Qinye
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, China.
    Zaifei, Zaifei
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tang, Zheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Self-doped conjugated polyelectrolyte with tuneable work function for effective hole transport in polymer solar cells2016In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 40, p. 15670-15675Article in journal (Refereed)
    Abstract [en]

    A water-soluble conjugated polyelectrolyte (CPE), PEDOT-S (poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid)), is demonstrated to be an excellent hole transport material in several polymer solar cells with different donor's HOMO (highest occupied molecular orbital). With a P3TI:PC71BM (poly[6,6′-bis(5′-bromo-3,4′-dioctyl-[2,2′-bithiophen]-5-yl)-1,1′-bis(2-hexyldecyl)-[3,3′-biindolinylidene]-2,2′-dione]:[6,6]-phenyl C71 butyric acid methyl ester) active layer, the device using PEDOT-S as a hole transport layer (HTL) outperforms the PEDOT:PSS-based devices due to an increased FF (fill factor). The devices' current density–voltage characteristics (JV) show that a PEDOT-S layer can operate well with a wide range of thicknesses as well, helped by its high conductivity and decent transparency. With UV-ozone treatment, the work function of the PEDOT-S can increase from 4.9 eV to 5.2 eV. In TQ1:PC71BM (poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl]:PC71BM) devices, which have a deeper donor HOMO than P3TI, Voc is improved from 0.81 V to 0.92 V by 7 min UV-ozone treatment, along with a suppressed reverse injection current and increased Jsc (short-circuit current density) and FF. Topography study shows the excellent coating ability of PEDOT-S. Conductive atomic force microscopy (C-AFM) shows the out-of-plane current in PEDOT-S film is one thousand times higher than that in PEDOT:PSS PH 4083 film under the same electric field and has much more uniformly distributed current pathways.

  • 14.
    Choong, Ferdinand X.
    et al.
    Karolinska Inst, Sweden.
    Lantz, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Shirani, Hamid
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Schulz, Anette
    Karolinska Inst, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Edlund, Ulrica
    KTH Royal Inst Technol, Sweden.
    Richter-Dahlfors, Agneta
    Karolinska Inst, Sweden.
    Stereochemical identification of glucans by a donor-acceptor-donor conjugated pentamer enables multi-carbohydrate anatomical mapping in plant tissues2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 7, p. 4253-4264Article in journal (Refereed)
    Abstract [en]

    Optotracing is a novel method for analytical imaging of carbohydrates in plant and microbial tissues. This optical method applies structure-responsive oligothiophenes as molecular fluorophores emitting unique optical signatures when bound to polysaccharides. Herein, we apply Carbotrace680, a short length anionic oligothiophene with a central heterocyclic benzodithiazole (BTD) motif, to probe for different glucans. The donor-acceptor-donor type electronic structure of Carbotrace680 provides improved spectral properties compared to oligothiophenes due to the possibility of intramolecular charge-transfer transition to the BTD motif. This enables differentiation of glucans based on the glycosidic linkage stereochemistry. Thus -configured starch is readily differentiated from -configured cellulose. The versatility of optotracing is demonstrated by dynamic monitoring of thermo-induced starch remodelling, shown in parallel by spectrophotometry and microscopy of starch granules. Imaging of Carbotrace680 bound to multiple glucans in plant tissues provided direct identification of their physical locations, revealing the spatial relationship between structural (cellulose) and storage (starch) glucans at sub-cellular scale. Our work forms the basis for the development of superior optotracers for sensitive detection of polysaccharides. Our non-destructive method for anatomical mapping of glucans in biomass will serve as an enabling technology for developments towards efficient use of plant-derived materials and biomass. [GRAPHICS] .

  • 15.
    Cirera, Borja
    et al.
    IMDEA Nanosci, Spain.
    Trukhina, Olga
    University of Autonoma Madrid, Spain.
    Björk, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Bottari, Giovanni
    IMDEA Nanosci, Spain; University of Autonoma Madrid, Spain; University of Autonoma Madrid, Spain.
    Rodriguez-Fernandez, Jonathan
    University of Autonoma Madrid, Spain.
    Martin-Jimenez, Alberto
    IMDEA Nanosci, Spain.
    Islyaikin, Mikhail K.
    Ivanovo State University of Chemistry and Technology, Russia.
    Otero, Roberto
    IMDEA Nanosci, Spain; University of Autonoma Madrid, Spain.
    Gallego, Jose M.
    CSIC, Spain.
    Miranda, Rodolfo
    IMDEA Nanosci, Spain; University of Autonoma Madrid, Spain.
    Torres, Tomas
    IMDEA Nanosci, Spain; University of Autonoma Madrid, Spain; University of Autonoma Madrid, Spain.
    Ecija, David
    IMDEA Nanosci, Spain.
    Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 40, p. 14129-14136Article in journal (Refereed)
    Abstract [en]

    Expanded porphyrins are large-cavity macro cycles with enormous potential in coordination chemistry, anion sensing, photodynamic therapy, and optoelectronics. In the last two decades, the surface science community has assessed the physicochemical properties of tetrapyrrolic-like macrocydes. However, to date, the sublimation, self-assembly and atomistic insights of expanded porphyrins on surfaces have remained elusive. Here, we show the self-assembly on Au(111) of an expanded aza-porphyrin, namely, an "expanded hemi-spatially-controlled porphyrazine", through a unique growth mechanism based on deprotonation long-range orientational self-assembly. Furthermore, a spatially controlled "writing" protocol on such self-assembled architecture is presented based on the STM tip-induced deprotonation of the inner protons of individual macrocydes. Finally, the capability of these surface-confined macrocydes to host lanthanide elements is assessed, introducing a novel off-centered coordination motif. The presented findings represent a milestone in the fields of porphyrinoid chemistry and surface science, revealing a great potential for novel surface patterning, opening new avenues for molecular level information storage, and boosting the emerging field of surface-confined coordination chemistry involving f-block elements.

  • 16.
    Dickhut, Rebecca
    et al.
    Virginia Institute for Marine Science, USA.
    Cincinelli, Alessandra
    Università degli Studi di Firenze, Italien.
    Cochran, Michel
    Virginia Institute for Marine Science, USA.
    Kylin, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Aerosol-Mediated Transport and Deposition of Brominated Diphenyl Ethers to Antarctica2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 6, p. 3135-3140Article in journal (Refereed)
    Abstract [en]

    Brominated diphenyl ethers (BDE47, 99, 100, and 209) were measured in air, snow and sea ice throughout western Antarctica between 2001 and 2007. BDEs in Antarctic air were predominantly associated with aerosols and were low compared to those in remote regions of the northern hemisphere, except in Marguerite Bay following the fire at Rothera research station in Sept 2001, indicating that this event was a local source of BDE209 to the Antarctic environment. Aerosol BDE47/100 reflects a mixture of commercial pentaBDE products; however, BDE99/100 is suggestive of photodegradation of BDE99 during long-range atmospheric transport (LRAT) in the austral summer. BDEs in snow were lower than predicted based on snow scavenging of aerosols indicating that atmospheric deposition events may be episodic. BDE47, -99, and -100 significantly declined in Antarctic sea ice between 2001 and 2007; however, BDE209 did not decline in Antarctic sea ice over the same time period. Significant losses of BDE99 and -100 from sea ice were recorded over a 19 day period in spring 2001 demonstrating that seasonal ice processes result in the preferential loss of some BDEs. BDE47/100 and BDE99/100 in sea ice samples reflect commercial pentaBDE products, suggesting that photodegradation of BDE99 is minimal during LRAT in the austral winter.

  • 17.
    Fröberg, Henric
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    A metaproteomics-based method for environmental assessment: A pilot study2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Metaproteomics, as a proteomic approach to analyse environmental samples, is a new and expanding field of research. The field promises new ways of determining the status of the organisms present in a sample, and could provide additional information compared to metagenomics. Being a novel field of research, robust methods and protocols have not yet been established. In this thesis, we examine several methods for a reliable extraction of protein from soil and periphyton samples. The extraction should preferably be fast, compatible with downstream analysis by mass spectrometry and extract proteins in proportion to their presence in the original sample. A variety of methods and buffers were used to extract proteins from soil and periphyton samples. Concentration determinations showed that all of these methods extracted enough protein for further analysis. For purification and digestion of the samples, several methods were used. The purified samples were analysed on three different mass spectrometers, with the Orbitrap Velos Pro delivering the best results. The results were matched against four genomic and metagenomic databases for identification of proteins, of which the UniProt/SwissProt database gave the best result. A maximum of 52 proteins were identified from periphyton samples when searching against UniProt/SwissProt with strict settings, of which the majority were highly conserved proteins. The main limitation for this type of work is currently the lack of proper metagenomic databases.

  • 18.
    Golabi, Mohsen
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics.
    Padiolleau, Laurence
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Cranfield University, England.
    Chen, Xi
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. University of Dundee, Scotland.
    Jafari, Mohammad Javad
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Sheikhzadeh, Elham
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Ferdowsi University of Mashhad, Iran.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Beni, Valerio
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Acreo Swedish ICT AB, Sweden.
    Doping Polypyrrole Films with 4-N-Pentylphenylboronic Acid to Enhance Affinity towards Bacteria and Dopamine2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 11, article id e0166548Article in journal (Refereed)
    Abstract [en]

    Here we demonstrate the use of a functional dopant as a fast and simple way to tune the chemical affinity and selectivity of polypyrrole films. More specifically, a boronic-functionalised dopant, 4-N-Pentylphenylboronic Acid (PBA), was used to provide to polypyrrole films with enhanced affinity towards diols. In order to prove the proposed concept, two model systems were explored: (i) the capture and the electrochemical detection of dopamine and (ii) the adhesion of bacteria onto surfaces. The chemisensor, based on overoxidised polypyrrole boronic doped film, was shown to have the ability to capture and retain dopamine, thus improving its detection; furthermore the chemisensor showed better sensitivity in comparison with overoxidised perchlorate doped films. The adhesion of bacteria, Deinococcus proteolyticus, Escherichia coli, Streptococcus pneumoniae and Klebsiella pneumoniae, onto the boric doped polypyrrole film was also tested. The presence of the boronic group in the polypyrrole film was shown to favour the adhesion of sugar-rich bacterial cells when compared with a control film (Dodecyl benzenesulfonate (DBS) doped film) with similar morphological and physical properties. The presented single step synthesis approach is simple and fast, does not require the development and synthesis of functional monomers, and can be easily expanded to the electrochemical, and possibly chemical, fabrication of novel functional surfaces and interfaces with inherent pre-defined sensing and chemical properties.

  • 19.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 387, p. 294-300Article in journal (Refereed)
    Abstract [en]

    We present first self-consistent modelling of x-ray photoelectron spectroscopy (XPS) Ti 2p, N ls, 0 ls, and C ls core level spectra with a cross-peak quantitative agreement for a series of TiN thin films grown by dc magnetron sputtering and oxidized to different extent by varying the venting temperature Tv of the vacuum chamber before removing the deposited samples. So-obtained film series constitute a model case for XPS application studies, where certain degree of atmosphere exposure during sample transfer to the XPS instrument is unavoidable. The challenge is to extract information about surface chemistry without invoking destructive pre-cleaning with noble gas ions. All TiN surfaces are thus analyzed in the as-received state by XPS using monochromatic Al K alpha. radiation (hv = 1486.6 eV). Details of line shapes and relative peak areas obtained from deconvolution of the reference Ti 2p and N 1 s spectra representative of a native TiN surface serve as an input to model complex core level signals from air-exposed surfaces, where contributions from oxides and oxynitrides make the task very challenging considering the influence of the whole deposition process at hand. The essential part of the presented approach is that the deconvolution process is not only guided by the comparison to the reference binding energy values that often show large spread, but in order to increase reliability of the extracted chemical information the requirement for both qualitative and quantitative self-consistency between component peaks belonging to the same chemical species is imposed across all core-level spectra (including often neglected 0 is and C is signals). The relative ratios between contributions from different chemical species vary as a function of T-v presenting a self-consistency check for our model. We propose that the cross-peak self-consistency should be a prerequisite for reliable XPS peak modelling as it enhances credibility of obtained chemical information, while relying entirely on reference binding energy values introduces large ambiguity. (C) 2016 Elsevier B.V. All rights reserved.

  • 20.
    Guanais Branchini, C.
    et al.
    University of Roma Tor Vergata, Italy.
    Dini, F.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Lundstrom, I.
    University of Roma Tor Vergata, Italy.
    Paolesse, R.
    University of Roma Tor Vergata, Italy.
    Di Natale, C.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Detection of toxic compounds in water with an array of optical reporters2015In: EUROSENSORS 2015, ELSEVIER SCIENCE BV , 2015, Vol. 120, p. 146-149Conference paper (Refereed)
    Abstract [en]

    An opto-electronic tongue, prepared using porphyrins, pH indicators, and their mixtures, has been tested for the analysis of toxic compounds in potable water. The color changes of sensitive dyes immersed in a water solution containing the target analytes were measured with an optical platform made by four LEDs (as light sources) and a digital camera (detector). We demonstrate that blends of dyes might be endowed with sensing properties wider than those of the single constituents, enabling the identification of a range of toxic compounds at concentrations smaller than 10(-6) mol/L. Furthermore, the use of the reporters in a sensor array configuration allows for the identification of the compounds disregarding their concentration. (C) Published by Elsevier Ltd.

  • 21.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Cook, Kevin M.
    Naval Air Syst Command, MD 20670 USA.
    Naguib, Michael
    Oak Ridge National Lab, TN 37831 USA.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Gogotsi, Yury
    Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA.
    X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 362, p. 406-417Article in journal (Refereed)
    Abstract [en]

    In this work, a detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented for select MXenes a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Herein we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti-3 C2Tx,Ti3CNTx, Nb2CTx and Nb4C3Tx where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, O, OH and F, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. From XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications. Published by Elsevier B.V.

  • 22.
    Hatamie, Amir
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Shahid Chamran University, Iran.
    Khan, Azam
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology. NED University of Engn and Technology, Pakistan.
    Golabi, Mohsen
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Beni, Valerio
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Sadollah Khani, Azar
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology. Shahid Chamran University, Iran.
    Alnoor, Hatim
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Zargar, Behrooz
    Shahid Chamran University, Iran.
    Bano, Sumaira
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zinc Oxide Nanostructure-Modified Textile and Its Application to Biosensing, Photocatalysis, and as Antibacterial Material2015In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 31, no 39, p. 10913-10921Article in journal (Refereed)
    Abstract [en]

    Recently, one-dimensional nanostructures with different morphologies (such as nanowires, nanorods (NRs), and nanotubes) have become the focus of intensive research, because of their unique properties with potential applications. Among them, zinc oxide (ZnO) nanomaterials has been found to be highly attractive, because of the remarkable potential for applications in many different areas such as solar cells, sensors, piezoelectric devices, photodiode devices, sun screens, antireflection coatings, and photocatalysis. Here, we present an innovative approach to create a new modified textile by direct in situ growth of vertically aligned one-dimensional (1D) ZnO NRs onto textile surfaces, which can serve with potential for biosensing, photocatalysis, and antibacterial applications. ZnO NRs were grown by using a simple aqueous chemical growth method. Results from analyses such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that the ZnO NRs were dispersed over the entire surface of the textile. We have demonstrated the following applications of these multifunctional textiles: (1) as a flexible working electrode for the detection of aldicarb (ALD) pesticide, (2) as a photo catalyst for the degradation of organic molecules (i.e., Methylene Blue and Congo Red), and (3) as antibacterial agents against Escherichia coli. The ZnO-based textile exhibited excellent photocatalytic and antibacterial activities, and it showed a promising sensing response. The combination of sensing, photo catalysis, and antibacterial properties provided by the ZnO NRs brings us closer to the concept of smart textiles for wearable sensing without a deodorant and antibacterial control. Perhaps the best known of the products that is available in markets for such purposes are textiles with silver nanoparticles. Our modified textile is thus providing acceptable antibacterial properties, compared to available commercial modified textiles.

  • 23.
    Hu, Jiwen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering. Shanghai Univ, Peoples R China.
    Zhang, Xin
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Liu, Tingting
    Tongji Univ, Peoples R China.
    Gao, Hong-Wen
    Tongji Univ, Peoples R China.
    Lu, Senlin
    Shanghai Univ, Peoples R China.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Hu, Zhang-Jun
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering. Shanghai Univ, Peoples R China.
    Ratiometric fluorogenic determination of endogenous hypochlorous acid in living cells2019In: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, ISSN 1386-1425, E-ISSN 1873-3557, Vol. 219, p. 232-239Article in journal (Refereed)
    Abstract [en]

    Hypochlorous acid (HClO) is one of the most important ROS (reactive oxygen species) and common pollutant in tap-water. However, the determination of HClO with fast response and high sensitivity/selectivity is still an urgent demanding. Here we fabricated a ratiometric fluorescent probe RC based on TBET (through-bond energy transfer) on the platform of coumarin and rhodamine with the thiosemicarbazide group as the linker. This probe could display the characteristic fluorescence emission of coumarin. Upon addition of HClO, the linker was reacted into an oxadiazole, resulting in the opening of spiro-ring of rhodamine. The resultant then gives ratiometric fluorogenic changes. The probe exhibits fast response and high selectivity and sensitivity towards HClO with a low limit of detection (similar to 140 nM). Eventually, RC is successfully applicated for determining spiked HClO in water samples and imaging endogenous HClO in living cells. (C) 2019 Published by Elsevier B.V.

  • 24.
    Huang, Ruting
    et al.
    Shanghai Univ, Peoples R China.
    Wu, Chenghao
    Shanghai Univ, Peoples R China.
    Huang, Shoushuang
    Shanghai Univ, Peoples R China.
    Chen, Dayong
    Shanghai Univ, Peoples R China; Chizhou Univ, Peoples R China.
    Zhang, Qian
    Shanghai Univ, Peoples R China.
    Wang, Qing
    Shanghai Univ, Peoples R China.
    Hu, Zhang-Jun
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering. Shanghai Univ, Peoples R China.
    Jiang, Yong
    Shanghai Univ, Peoples R China.
    Zhao, Bing
    Shanghai Univ, Peoples R China.
    Chen, Zhiwen
    Shanghai Univ, Peoples R China.
    Construction of SnS2-SnO2 heterojunctions decorated on graphene nanosheets with enhanced visible-light photocatalytic performance2019In: ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY, ISSN 2053-2296, Vol. 75, p. 812-821Article in journal (Refereed)
    Abstract [en]

    Heterostructures formed by the growth of one kind of nanomaterial in/on another have attracted increasing attention due to their microstructural characteristics and potential applications. In this work, SnS2-SnO2 heterostructures were successfully prepared by a facile hydrothermal method. Due to the enhanced visible-light absorption and efficient separation of photogenerated holes and electrons, the SnS2-SnO2 heterostructures display excellent photocatalytic performance for the degradation of rhodamine (RhB) under visible-light irradiation. Additionally, it is found that the introduction of graphene into the heterostructures further improved photocatalytic activity and stability. In particular, the optimized SnS2-SnO2/graphene photocatalyst can degrade 97.1% of RhB within 60 min, which is about 1.38 times greater than that of SnS2-SnO2 heterostructures. This enhanced photocatalytic activity could be attributed to the high surface area and the excellent electron accepting and transporting properties of graphene, which served as an acceptor of the generated electrons to suppress charge recombination. These results provide a new insight for the design and development of hybrid photocatalysts.

  • 25.
    Huotari, Joni
    et al.
    Microelectronics and Material Physics Laboratories, University of Oulu, Finland.
    Lappalainen, Jyrki
    Microelectronics and Material Physics Laboratories, University of Oulu, Finland.
    Puustinen, Jarkko
    Microelectronics and Material Physics Laboratories, University of Oulu.
    Baur, Tobias
    Department of Mechatronics, Saarland University, Germany.
    Alepee, Christine
    SGX Sensortech SA, Switzerland.
    Haapalainen, Tomi
    Microelectronics and Material Physics Laboratories, University of Oulu, Finland.
    Komulainen, Samuli
    Microelectronics and Material Physics Laboratories, University of Oulu, Finland.
    Pylvänäinen, Juho
    Microelectronics and Material Physics Laboratories, University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. Microelectronics and Material Physics Laboratories, University of Oulu, Finland.
    Pulsed laser deposition of metal oxide nanoparticles, agglomerates, and nanotrees for chemical sensors2015In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 120, p. 1158-1161Article in journal (Refereed)
    Abstract [en]

    Pulsed laser deposition (PLD) was used to prepare WO3, ZnO-modified SnO2, and V2O5 nanostructures as gas sensing materials on top of commercial SGX Sensortech MEMS microheater platforms. The layers were formed of different types of nanostructures including nanoparticles, agglomerates, and nanotrees with fractal-like growth. Clear dependency between the deposition parameters, structural morphology, and gas sensing performance was found. The sensing materials were found to be sensitive to different types of gaseous species, so that WO3 and SnO2 had very good response up to 600% to 50 ppm NO, and V2O5 up to -35% to 20 ppm NH3, respectively.

  • 26.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Lessons Learned in Organic Optoelectronics2019In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 31, no 17, p. 6309-6314Article in journal (Refereed)
    Abstract [en]

    The contributions of Jean-Luc Bredas to the science of organic optoelectronics are immense, and so are the skills of communication in his talks and papers. They have been very influential and shaped the development of organic optoelectronics over a long period of time. This Festschrift contribution is a narrative of the impact of his work on my own scientific and technological studies and a way of acknowledging his great influence. Thanks!

  • 27.
    Jian, Jingxin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Shi, Yuchen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Ekeroth, Sebastian
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Keraudy, Julien
    Oerlikon Balzers, Liechtenstein.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    A nanostructured NiO/cubic SiC p-n heterojunction photoanode for enhanced solar water splitting2019In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, no 9, p. 4721-4728Article in journal (Refereed)
    Abstract [en]

    Photoelectrochemical (PEC) water-splitting offers a promising method to convert the intermittent solar energy into renewable and storable chemical energy. However, the most studied semiconductors generally exhibit a poor PEC performance including low photocurrent, small photovoltage, and/or large onset potential. In this work, we demonstrate a significant enhancement of photovoltage and photocurrent together with a substantial decrease of onset potential by introducing electrocatalytic and p-type NiO nanoclusters on an n-type cubic silicon carbide (3C-SiC) photoanode. Under AM1.5G 100 mW cm(-2) illumination, the NiO-coated 3C-SiC photoanode exhibits a photocurrent density of 1.01 mA cm(-2) at 0.55 V versus reversible hydrogen electrode (V-RHE), a very low onset potential of 0.20 V-RHE and a high fill factor of 57% for PEC water splitting. Moreover, the 3C-SiC/NiO photoanode shows a high photovoltage of 1.0 V, which is the highest value among reported photovoltages. The faradaic efficiency measurements demonstrate that NiO also protects the 3C-SiC surface against photo-corrosion. The impedance measurements evidence that the 3C-SiC/NiO photoanode facilitates the charge transfer for water oxidation. The valence-band position measurements confirm the formation of the 3C-SiC/NiO p-n heterojunction, which promotes the separation of the photogenerated carriers and reduces carrier recombination, thus resulting in enhanced solar water-splitting.

  • 28.
    Jian, Jingxin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Shi, Yuchen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Cubic SiC Photoanode Coupling with Ni:FeOOH Oxygen-Evolution Cocatalyst for Sustainable Photoelectrochemical Water Oxidation2019In: SOLAR RRL, ISSN 2367-198X, article id 1900364Article in journal (Refereed)
    Abstract [en]

    As an efficient water oxidation cocatalyst, the Earth-abundant nickel-iron oxyhydroxide (Ni:FeOOH) is introduced to coat on the cubic silicon carbide (3C-SiC) photoanode surface for improving the photoelectrochemical (PEC) water oxidation performance. The FeOOH is prepared on the 3C-SiC photoanode surface by hydrothermal deposition, followed by a photoassisted electrodeposition of NiOOH. It is shown that the Ni:FeOOH layer is composed of the beta-FeOOH nanorods with a conformal coating of the amorphous NiOOH. Under AM1.5G 100 mW cm(-2) illumination, the 3C-SiC/Ni:FeOOH photoanode exhibits a very low onset potential of 0.2 V versus reversible hydrogen electrode (V-RHE) and a high photocurrent density of 1.15 mA cm(-2) at 1.23 V-RHE, distinctly outperforming the 3C-SiC and the 3C-SiC/FeOOH counterparts. Open-circuit potential and impedance spectroscopy results demonstrate that the nanostructured Ni:FeOOH layer on the 3C-SiC surface increases the photovoltage and promotes the charge transfer toward the electrolyte, thus significantly improving the PEC water-splitting performance. These results provide new insights for the development of photoanodes toward efficient solar-fuel generation.

  • 29.
    Kananizadeh, Negin
    et al.
    Univ Nebraska, NE 68588 USA; Clemson Univ, SC 29625 USA.
    Lee, Jaewoong
    Natl Inst Environm Res, South Korea.
    Mousavi, Ehsan S.
    Clemson Univ, SC 29634 USA.
    Rodenhausen, Keith B.
    Univ Nebraska, NE 68588 USA; Univ Nebraska, NE 68588 USA.
    Sekora, Derek
    Univ Nebraska, NE 68588 USA.
    Schubert, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Univ Nebraska, NE 68588 USA; Leibniz Inst Polymer Res IPF Dresden, Germany.
    Bartelt-Hunt, Shannon
    Univ Nebraska, NE 68588 USA.
    Schubert, Eva
    Univ Nebraska, NE 68588 USA.
    Zhangh, Jianmin
    Sichuan Univ, Peoples R China.
    Li, Yusong
    Univ Nebraska, NE 68588 USA.
    Deposition of titanium dioxide nanoparticles onto engineered rough surfaces with controlled heights and properties2019In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 571, p. 125-133Article in journal (Refereed)
    Abstract [en]

    Understanding the influence of surface roughness on the deposition of nanoparticles is important to a variety of environmental and industrial processes. In this work, slanted columnar thin films (SCTFs) were engineered to serve as an analogue for rough surfaces with controlled height and surface properties. The deposition of titanium dioxide nanoparticles (TiO(2)NPs) onto alumina-or silica-coated SCTFs (Al2O3-Si-SCTF, SiO2-Si-SCTF) with varying heights (50 nm, 100 nm, and 200 nm) was measured using a combined quartz crystal microbalance with dissipation monitoring (QCM-D) and generalized ellipsometry (GE) technique. No TiO2NP deposition was observed on flat, silica-coated QCM-D sensors or rough, 100 nm thick SiO2-Si-SCTF. TiO2NP deposition onto Al2O3-Si-SCTFs in ultra-pure water was significantly higher than on the flat alumina-coated QCM-D sensor, and deposition increased as the roughness height increased. The nanoparticle attachment was sensitive to the local flow field and the interaction energy between nanoparticles and the QCM-D sensor. At a higher ionic strength condition (100 mM NaCl), TiO2NP aggregates with varying sizes formed a rigid layer on top of SCTFs. For the first time, deposition of nanoparticles was measured as a function of roughness height, and the impact of roughness on the properties of the attached nanoparticle layers was revealed. This finding indicates that key parameters describing surface roughness should be explicitly included into models to accurately predict the transport of nanoparticles in the subsurface.

  • 30.
    Karlsson, Cecilia
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Studies of unspecific interaction between the Aβ antibody 6E10 and blood coagulation protein factor X2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Alzheimer’s disease is neurodegenerative with amyloid plaque and neurofibrillary tangles as pathological hallmarks. The most abundant component in the amyloid plaque is the amyloid-β (Aβ) peptide, with presence of both isoform Aβ40 and Aβ42. In immunological methods studying the Aβ peptide a specific monoclonal antibody, 6E10, is routinly being used. In this master thesis work unspecific binding of 6E10 antibody to the blood coagulating protein factor X has been investigated. Factor X is a protein in the blood coagulation cascade where it forms protein complex that activates thrombin. Non-hemostatic functions with connections to nerves and Aβ peptide are also known. Studies with Western blot show clear binding of 6E10 to denatured factor X. Interaction studies with ELISA gives uncertain results, where binding is found but no clear binding curve is obtained. Studies with native factor X in real time measurements with SPR gave no binding at all. These results suggest binding to denatured factor X. Immunohistochemistry studies of colocalisation of factor X and Aβ peptide gave clear evidence that factor X and Aβ are found near each other in mouse brain tissue. Factor X is located outside the blood vessels and Aβ is located at the inside. 

  • 31.
    Kylin, Henrik
    et al.
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Bouwman, Henk
    Nort-West Uiversity, South Africa.
    Uptake Mechanisms of Airborne Persistent Organic Pollutants in “Plants” – Understanding the Biological Influence on the Deposition of Pops to Remote Terrestrial Ecosystems2014In: Organohalogen Compounds, ISSN 1026-4892, Vol. 76, p. 1207-1210Article in journal (Refereed)
  • 32.
    Kylin, Henrik
    et al.
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Department of Environmental Science and Analytical Chemistry, Stockholm University; Norwegian Institute for Air Research, Tromsø, Norway.
    Hammar, Johan
    Naturhistoriska riksmuseet.
    Mowrer, Jacques
    Stockholms universitet.
    Bouwman, Henk
    North West University, South Africa.
    Edelstam, Carl
    Naturhistoriska riksmuseet.
    Olsson, Mats
    Naturhistoriska riksmuseet.
    Jensen, Sören
    Stockholms universitet.
    Persistent organic pollutants in biota samples collectedduring the Ymer-80 expedition to the Arctic2015In: Polar Research, ISSN 0800-0395, E-ISSN 1751-8369, Vol. 34, article id 21129Article in journal (Refereed)
    Abstract [en]

    During the 1980 expedition to the Arctic with the icebreaker Ymer, a number of vertebrate species were sampled for determination of persistent organic pollutants. Samples of Arctic char (Salvelinus alpinus, n=34), glaucous gull (Larus hyperboreus, n=8), common eider (Somateria mollissima, n=10), Brünnich’s guillemot (Uria lomvia, n=9), ringed seal (Pusa hispida, n=2) and polar bear (Ursus maritimus, n=2) were collected. With the exception of Brünnich’s guillemot, there was a marked contamination difference of birds from western as compared to eastern/northern Svalbard. Samples in the west contained a larger number of polychlorinated biphenyl (PCB) congeners and also polychlorinated terphenyls, indicating local sources. Brünnich’s guillemots had similar pollutant concentrations in the west and east/north; possibly younger birds were sampled in the west. In Arctic char, pollutant profiles from lake Linnévatn (n=5), the lake closest to the main economic activities in Svalbard, were similar to profiles in Arctic char from the Shetland Islands (n=5), but differed from lakes to the north and east in Svalbard (n=30). Arctic char samples had higher concentrations of hexachlorocyclohexanes (HCHs) than the marine species of birds and mammals, possibly due to accumulation via snowmelt. Compared to the Baltic Sea, comparable species collected in Svalbard had lower concentrations of PCB and dichlorodiphenyltrichloroethane (DDT), but similar concentrations indicating long-range transport of hexachlorobenzene, HCHs and cyclodiene pesticides. In samples collected in Svalbard in 1971, the concentrations of PCB and DDT in Brünnich’s guillemot (n=7), glaucous gull (n=2) and polar bear (n=2) were similar to the concentrations found in 1980.

  • 33.
    Kylin, Henrik
    et al.
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
    Svensson, Teresia
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Jensen, Sören
    Stockholm University, Sweden.
    Strachan, William
    Environment and Climate Change Canada, Canada.
    Franich, Robert
    Scion Research, New Zealand.
    Bouwman, Hindrik
    North-West University, South Africa.
    The trans-continental distributions of pentachlorophenol and pentachloroanisole in pine needles indicate separate origins2017In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 229, p. 688-695Article in journal (Refereed)
    Abstract [en]

    The production and use of pentachlorophenol (PCP) was recently prohibited/restricted by the Stockholm Convention on persistent organic pollutants (POPs), but environmental data are few and of varying quality. We here present the first extensive dataset of the continent-wide (Eurasia and Canada) occurrence of PCP and its methylation product pentachloroanisole (PCA) in the environment, specifically in pine needles. The highest concentrations of PCP were found close to expected point sources, while PCA chiefly shows a northern and/or coastal distribution not correlating with PCP distribution. Although long-range transport and environmental methylation of PCP or formation from other precursors cannot be excluded, the distribution patterns suggest that such processes may not be the only source of PCA to remote regions and unknown sources should be sought. We suggest that natural sources, e.g., chlorination of organic matter in Boreal forest soils enhanced by chloride deposition from marine sources, should be investigated as a possible partial explanation of the observed distributions. The results show that neither PCA nor total PCP (ΣPCP = PCP + PCA) should be used to approximate the concentrations of PCP; PCP and PCA must be determined and quantified separately to understand their occurrence and fate in the environment. The background work shows that the accumulation of airborne POPs in plants is a complex process. The variations in life cycles and physiological adaptations have to be taken into account when using plants to evaluate the concentrations of POPs in remote areas.

  • 34.
    Lademann, J.
    et al.
    Charite University of Medical Berlin, Germany.
    Richter, H.
    Charite University of Medical Berlin, Germany.
    Knorr, F.
    Charite University of Medical Berlin, Germany.
    Patzelt, A.
    Charite University of Medical Berlin, Germany.
    Darvin, M. E.
    Charite University of Medical Berlin, Germany.
    Ruehl, E.
    Free University of Berlin, Germany.
    Cheung, Kwan Yee
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Lai, K. K.
    Hong Kong University of Science and Technology, Peoples R China.
    Renneberg, R.
    Hong Kong University of Science and Technology, Peoples R China.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Triggered release of model drug from AuNP-doped BSA nanocarriers in hair follicles using IRA radiation2016In: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 30, p. 388-396Article in journal (Refereed)
    Abstract [en]

    Recent advances in the field of dermatotherapy have resulted in research efforts focusing on the use of particle-based drug delivery systems for the stimuli-responsive release of drugs in the skin and skin appendages, i.e. hair follicles and sebaceous glands. However, effective and innocuous trigger mechanisms which result in the release of the drugs from the nanocarriers upon reaching the target structures are still lacking. For the first time, the present study demonstrated the photo-activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles (approx. 545 nm) using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The IRA radiation-induced plasmonic heating of the AuNPs results in the partial decomposition or opening of the albumin particles and release the model drug, while control particles without AuNPs show insignificant release. The results demonstrate the feasibility of using IRA radiation to induce release of encapsulated drugs from plasmonic nanocarriers for the targeting of follicular structures. However, the risk of radiation-induced skin damage subsequent to repeated applications of high infrared dosages may be significant. Future studies should aim at determining the suitability of lower infrared A dosages, such as for medical treatment regimens which may necessitate repeated exposure to therapeutics. Statement of significance Follicular targeting using nanocarriers is of increasing importance in the prophylaxis and treatment of dermatological or other diseases. For the first time, the present study demonstrated the photo activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The results demonstrate the feasibility of using wIRA radiation to induce release of encapsulated drugs for the targeting of follicular structures, and provide a new vision on the development of optically addressable delivery systems for controlled release of drugs in the skin and skin appendages, i.e. hair follicles and sebaceous glands. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 35.
    Landälv, Ludvig
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Thin Film and Plasma Characterization of PVD Oxides2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The state-of-the-art tools for machining metals are primarily based on a metal-ceramic composite(WC-Co) coated with different combinations of carbide, nitride and oxide coatings. Combinations of these coating materials are optimized to withstand specific wear conditions. Oxide coatings are especially desired because of their possible high hot hardness, chemical inertness with respect to the workpiece, and their low friction.

    This thesis deals with process and coating characterization of new oxide coatings deposited by physical vapor deposition (PVD) techniques, focusing on the Cr-Zr-O and Al-Cr-Si-O systems.

    The thermal stability of α-Cr0.28Zr0.10O0.61 deposited by reactive radio frequency (RF)-magnetron sputtering at 500 °C was investigated after annealing up to 870 °C. The annealed samples showed transformation of α-(Cr,Zr)2O3 and amorphous ZrOx-rich areas into tetragonal ZrO2 and bcc Cr. The instability of the α-(Cr,Zr)2O3 is surprising and possibly related to the annealing being done under vacuum, facilitating the loss of oxygen. The stabilization of the room temperature metastable tetragonal ZrO2 phase, due to surface energy effects, may prove to be useful for metal cutting applications. The observed phase segregation of α-(Cr,Zr)2O3 and formation of tetragonal ZrO2 with corresponding increase in hardness for this pseudo-binary oxide system also opens up design routes for pseudo-binary oxides with tunable microstructural and mechanical properties.

    The inherent difficulties of depositing insulating oxide films with PVD, demanding a closed circuit, makes the investigation of process stability an important part of this research. In this context, we investigated the influence of adding small amount of Si in Al-Cr cathode on plasma characteristics ,process parameters, and coating properties. Si was chosen here due to a previous study showing improved erosion behavior of Al-Cr-Si over pure Al-Cr cathode without Si incorporation in the coating.

    This work shows small improvements in cathode erosion and process stability (lower pressure and cathode voltage) when introducing 5 at % Si in the Al70Cr30-cathode. This also led to fewer droplets at low cathode current and intermediate O2 flow. A larger positive effect on cathode erosion was observed with respect to cleaning the cathode from oxide contamination by increasing cathode current with 50%. However, higher cathode current also resulted in increased amount of droplets in the coating which is undesirable. Through plasma analysis the presence of volatile SiO species could be confirmed but the loss of Si through volatile SiO species was negligible, since the coating composition matched the cathode composition. The positive effect of added Si on the process stability at the cathode surface should be weighed against Si incorporation in the coating. This incorporation may or may not be beneficial for the final application since literature states that Si promotes the metastable γ-phase over the thermodynamically stable α-phase of pure Al2O3, contrary to the effect of Cr, which stabilizes the α-phase.

  • 36.
    Li, Guowei
    et al.
    Max Planck Inst Chem Phys Solids, Germany.
    Sun, Yan
    Max Planck Inst Chem Phys Solids, Germany.
    Rao, Jiancun
    Univ Maryland, MD 20742 USA.
    Wu, Jiquan
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Kumar, Anil
    Univ Groningen, Netherlands.
    Xu, Qiu Nan
    Max Planck Inst Chem Phys Solids, Germany.
    Fu, Chenguang
    Max Planck Inst Chem Phys Solids, Germany.
    Liu, Enke
    Max Planck Inst Chem Phys Solids, Germany.
    Blake, Graeme R.
    Univ Groningen, Netherlands.
    Werner, Peter
    Max Planck Inst Microstruct Phys, Germany.
    Shao, Baiqi
    Chinese Acad Sci, Peoples R China.
    Liu, Kai
    Chinese Acad Sci, Peoples R China.
    Parkin, Stuart
    Max Planck Inst Microstruct Phys, Germany.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Liou, Sz-Chian
    Univ Maryland, MD 20742 USA.
    Auffermann, Gudrun
    Max Planck Inst Chem Phys Solids, Germany.
    Zhang, Jian
    Tech Univ Dresden, Germany; Tech Univ Dresden, Germany.
    Felser, Claudia
    Max Planck Inst Chem Phys Solids, Germany.
    Feng, Xinliang
    Tech Univ Dresden, Germany; Tech Univ Dresden, Germany.
    Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media2018In: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 8, no 24, article id 1801258Article in journal (Refereed)
    Abstract [en]

    The electrolysis processes such as hydrogen evolution reaction (HER) require high efficient catalysts with robust surface stability. A high conductivity is also necessary to speed up the charge transport between the catalyst and the electrolyte. Recently, the observation of exceedingly high conductivity in the topological semimetal MoP, has provided a model catalyst to investigate the correlation between the electrical transport and the electrocatalytic activity for the HER. Thus, MoP is encapsulated in a Mo, P codoped carbon layer (MoP@C). This composite material exhibits outstanding HER performance, with an extremely low overpotential of 49 mV at a current density of 10 mA cm(-2) and a Tafel slope of 54 mV dec(-1) in an alkaline medium. In addition, electron transport analysis indicates that MoP exhibits high conductivity and mobility due to the existence of triple-point fermions and a complex Fermi surface. Furthermore, the presence of P-C and Mo-C bonds at the interface between the carbon layer and the MoP particles modulates the band structure of MoP@C and facilitates fast electron transfer, accumulation, and subsequent delocalization, which are in turn responsible for the excellent HER activity.

  • 37.
    Lin, Tao
    et al.
    Technical University of Munich, Germany.
    Zhang, Liding
    Technical University of Munich, Germany.
    Björk, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Chen, Zhi
    Karlsruhe Institute Technology, Germany.
    Ruben, Mario
    Karlsruhe Institute Technology, Germany; University of Strasbourg, France.
    Barth, Johannes V.
    Technical University of Munich, Germany.
    Klappenberger, Florian
    Technical University of Munich, Germany.
    Terminal Alkyne Coupling on a Corrugated Noble Metal Surface: From Controlled Precursor Alignment to Selective Reactions2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 62, p. 15588-15593Article in journal (Refereed)
    Abstract [en]

    Surface-templated covalent coupling of organic precursors currently emerges as a promising route to the atom-precise fabrication of low-dimensional carbon materials. Here, we investigate the adsorption and the coupling reactions of 4,4-diethynyl-1,1:4,1-terphenyl on Au(110) under ultra-high vacuum conditions by using scanning tunneling microscopy combined with density functional theory and kinetic Monte Carlo calculations. Temperature treatment induces both 1,2,4-asymmetric cyclotrimerization and homocoupling, resulting in various reaction products, including a previously unreported, surface-templated H-shaped pentamer. Our analysis of the temperature-dependent relative product abundances unravels that 1,2,4-trimerization and homocoupling proceed via identical intermediate species with the final products depending on the competition of coupling to a third monomer versus dehydrogenation. Our study sheds light on the control of coupling reactions by corrugated surfaces and annealing protocols.

  • 38.
    Lin, Yuanbao
    et al.
    Jinan Univ, Peoples R China.
    Jin, Yingzhi
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Dong, Sheng
    South China Univ Technol, Peoples R China.
    Zheng, Wenhao
    Jinan Univ, Peoples R China.
    Yang, Junyu
    Jinan Univ, Peoples R China.
    Liu, Alei
    Jinan Univ, Peoples R China.
    Liu, Feng
    Shanghai Jiao Tong Univ, Peoples R China.
    Jiang, Yufeng
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    Russell, Thomas P.
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Jinan Univ, Peoples R China.
    Huang, Fei
    South China Univ Technol, Peoples R China.
    Hou, Lintao
    Jinan Univ, Peoples R China.
    Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%2018In: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 8, no 13, article id 1701942Article in journal (Refereed)
    Abstract [en]

    The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7-Th donor and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2,3-d]-s-indaceno[1,2-b:5,6-b]dithiophene) (ITIC) acceptor fabricated by doctor-blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large-area (2.03 cm(2)) indium tin oxide (ITO)-free doctor-bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin-coated counterpart. To understand the mechanism of the performance enhancement with doctor-blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor-blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8-diiodooctane that prolongs the dynamic drying time of the doctor-bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large-area ITO-free doctor-bladed nonfullerene OSCs indicates the feasibility of doctor-blade printing in large-scale fullerene-free OSC manufacturing. For the first time, the open-circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation.

  • 39.
    Liu, Yuan
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Theoretical Studies of Natural Gas Hydrates and H-bonded Clusters and Crystals2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis H-bonded systems (natural gas hydrates, water clusters, and crystal ice) are studied by density functional theory (DFT) computations.

    Natural gas hydrates (NGHs) play an important role in energy and environmental fields: NGHs are considered as a promising backup energy resource in the near-future due to their tremendous carbon content; improper exploration of NGHs could induce geological disasters and aggravate the greenhouse effect. In addition, many technologies based on gas hydrates are being applied and developed. The thermodynamic stabilities of various water cavities in different clathrate crystalline phases occupied by hydrocarbon gas molecules are studied by dispersion-corrected hybrid functionals. The Raman spectra of C-C and C-H stretching vibrations of hydrocarbon molecules in various water cavities in the solid state are derived. The trends of C-H stretching vibrational frequencies are found to follow the prediction by the “loose cage ─| tight cage” model. In addition, the trends and origins of 13C NMR chemical shifts of hydrocarbon molecules in various NGHs are presented. These theoretical results will enlarge the database of C-C and C-H stretching vibrational frequencies and 13C NMR parameters of hydrocarbon molecules in NGHs, and provide valuable information to help identify the types of clathrate phases and varieties of guest molecules included in NGHs samples taken from natural sites.

    The behavior of water clusters may help to understand the properties of its liquid and solid states. The thermodynamic stabilities and IR spectra of a small-, medium-, and large-sized water cluster are studied in this work. After full optimization of (H2O)20,54,100 using the hybrid functional B3LYP, the electronic energies, zero-point energies, internal energies, enthalpies, entropies, and Gibbs free energies of the water clusters are computed. The OH stretching vibrational IR spectra of (H2O)20,54,100 are also presented and split into sub-spectra for different H-bond types based on the specific contributions from each group. It is found that the OH stretching vibrational frequencies of water are sensitive to the conformations of the H-bonds and the vibrations of the H-bonds belonging to different types are located in separated regions in the IR spectra. Thus, the spectroscopic fingerprints will reflect the H-bond topology of the water molecules in a water cluster.

    Ice XI has been suggested to be involved in the process of planetary formation as a considerable electric field might be formed from the ferroelectric ice XI in space. IR and Raman spectroscopic technology can be directly used to identify the occurrence of ferroelectric ice XI in laboratory or extraterrestrial settings. Due to the difficulty for DFT to describe non-covalent systems, the performance of 16 different DFT methods applied on the ice Ih, VIII, IX, and XI crystal phases are assessed. Based on the computational accuracy and cost, the IR and Raman spectra of ice Ih and XI are derived and compared. The librational vibrations are found to be the identifier which can be used to distinguish ice Ih and ice XI in the universe. In addition, the existence only one kind of H-bond in ice Ih is demonstrated from the overlapping sub-spectra for different types of H-bonded pair configurations in 16 isomers of ice Ih.

    The region of water under negative pressure is an exotic land in lack of exploitation. Guest free clathrate hydrate (clathrate ice) of sII type has been recently confirmed experimentally at negative pressure. Does any other clathrate ice phase exist at negative pressure region? Since clathrate hydrate are isostructural with silica clathrate minerals and semiconductor clathrates, and crystal structure prediction by analogy with known structures and first-principles computations is an effective way to find new crystalline phases of solid materials, we are motived to look for new clathrate ice phases from silica or semiconductor clathrate materials based on first-principles computations. Borrowing the idea new clathrate frameworks of ZnO and SiC can be constructed by connecting their bubble clusters in different ways, new clathrate ice phases (sL, sL_I, sL_II, and sL_III) are generated by connecting the water bubble clusters according to different rules. Using the non-local dispersion-corrected vdW-DF2 functional, clathrate ice sL with ultralow density (0.6 g/cm3) is predicted by first-principles phase diagram computations to be stable under larger negative pressures than the sII phase. The phase diagram of water is thus extended into the lower negative pressure region.

    List of papers
    1. Fingerprints in IR OH vibrational spectra of H2O clusters from different H-bond conformations by means of quantum-chemical computations
    Open this publication in new window or tab >>Fingerprints in IR OH vibrational spectra of H2O clusters from different H-bond conformations by means of quantum-chemical computations
    2014 (English)In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 20, no 6, p. 2281-Article in journal (Refereed) Published
    Abstract [en]

    The thermodynamic stabilities and IR spectra of the three water clusters (H2O)(20), (H2O)(54,), and (H2O)(100) are studied by quantum-chemical computations. After full optimization of the (H2O)(20,54,100) structures using the hybrid density functional B3LYP together with the 6-31+G(d,p) basis set, the electronic energies, zero-point energies, internal energies, enthalpies, entropies, and Gibbs free energies of the water clusters at 298 K are investigated. The OH stretching vibrational IR spectra of (H2O)(20,54,100) are simulated and split into sub-spectra for different H-bond groups depending on the conformations of the hydrogen bonds. From the computed spectra the different spectroscopic fingerprint features of water molecules in different H-bond conformations in the water clusters are inferred.

    Place, publisher, year, edition, pages
    Springer Berlin/Heidelberg, 2014
    Keywords
    H-bond topology network; IR spectra Water cluster
    National Category
    Chemical Sciences
    Identifiers
    urn:nbn:se:liu:diva-109272 (URN)10.1007/s00894-014-2281-x (DOI)000338632200021 ()24831534 (PubMedID)
    Available from: 2014-08-12 Created: 2014-08-11 Last updated: 2017-12-05Bibliographically approved
    2. C-C Stretching Raman Spectra and Stabilities of Hydrocarbon Molecules in Natural Gas Hydrates: A Quantum Chemical Study
    Open this publication in new window or tab >>C-C Stretching Raman Spectra and Stabilities of Hydrocarbon Molecules in Natural Gas Hydrates: A Quantum Chemical Study
    2014 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 118, no 49, p. 11641-11651Article in journal (Refereed) Published
    Abstract [en]

    The presence of specific hydrocarbon gas molecules in various types of water cavities in natural gas hydrates (NGHs) are governed by the relative stabilities of these encapsulated guest molecule-water cavity combinations. Using molecular quantum chemical dispersion-corrected hybrid density functional computations, the interaction (Delta E(host-)guest) and cohesive energies (Delta E-coh), enthalpies, and Gibbs free energies for the complexes of host water cages and hydrocarbon guest molecules are calculated at the pi B97X-D/6-311++G(2d,2p) level of theory. The zero-point energy effect of ?Ehost-guest and ?Ecoh is found to be quite substantial. The energetically optimal host-guest combinations for seven hydrocarbon gas molecules (CH4, C2H6, C3H6, C3H8, C4H8, i-C4H10, and n-C4H10) and various water cavities (D, ID, T, P, H, and I) in NGHs are found to be CH4@D, C2H6@T, C3H6@T, C3H8@T, C4H8@T/P/H, i-C4H10@H, and n-C4H10@H, as the largest cohesive energy magnitudes will be obtained with these host-guest combinations. The stabilities of various water cavities enclosing hydrocarbon molecules are evaluated from the computed cohesive Gibbs free energies: CH4 prefers to be trapped in a ID cage; C2H6 prefer T cages; C3H6 and C3H8 prefer T and H cages; C4H8 and i-C4H10 prefer H cages; and n-C4H10 prefer I cages. The vibrational frequencies and Raman intensities of the C-C stretching vibrational modes for these seven hydrocarbon molecules enclosed in each water cavity are computed. A blue shift results after the guest molecule is trapped from gas phase into various water cages due to the host-guest interactions between the water cage and hydrocarbon molecule. The frequency shifts to the red as the radius of water cages increases. The model calculations support the view that C-C stretching vibrations of hydrocarbon molecules in the water cavities can be used as a tool to identify the types of crystal phases and guest molecules in NGHs.

    Place, publisher, year, edition, pages
    American Chemical Society, 2014
    National Category
    Chemical Sciences
    Identifiers
    urn:nbn:se:liu:diva-113497 (URN)10.1021/jp510118p (DOI)000346320800021 ()25406092 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council (VR); Swedish supercomputer center (NSC); State Scholarship Fund of China Scholarship Council [201206060016]

    Available from: 2015-01-19 Created: 2015-01-19 Last updated: 2017-12-05
    3. CH-Stretching Vibrational Trends in Natural Gas Hydrates Studied by Quantum-Chemical Computations
    Open this publication in new window or tab >>CH-Stretching Vibrational Trends in Natural Gas Hydrates Studied by Quantum-Chemical Computations
    2015 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, no 30, p. 17084-17091Article in journal (Refereed) Published
    Abstract [en]

    Vibrational Raman spectrosopy of hydrocarbon CH-stretching vibrations is often-used to study natural gas, hydrates., In this work, CH-stretching vibrational, Raman spectra of hydrocarbon molectles (CH4, C2H6, C(3)H6, C3H8, C4H8, i-C4H10, and n-C4H10) encapsulated in the water cages (D, ID, T, P, H, and I) of the SI, sII, sH, and sK crystal phases. are derived from quantum-chemical computations at the omega B97X-D/6-311++G(24,2p) level of theory. The trends of CH-stretching vibrational frequencies Of hydrocarbon Molecules in natural gas hydrates are found to follow the prediction by the loose cage tight cage model: as the size of Water cavity increases, the CH frequencies will first decrease and: then increase until equal to-that in the gas phase. In the "tight cage" situation, the frequency will be greater than in the gas phase; in the "loose cage" situation, the frequency will be smaller or asymptotic to that in the gas phase. Furthermore, the OH-stretching frequencies are sensitive to the H-bond configuration, and the varying strengths of H-bonds for different configurations are reflected by,the frequency distribution in the corresponding subspectra.

    Place, publisher, year, edition, pages
    American Chemical Society, 2015
    National Category
    Theoretical Chemistry
    Identifiers
    urn:nbn:se:liu:diva-120872 (URN)10.1021/acs.jpcc.5b01903 (DOI)000359031900007 ()
    Note

    Funding Agencies|Swedish Research Council (VR); Swedish Supercomputer Center (SNIC/NSC); China Scholarship Council [201206060016]

    Available from: 2015-08-28 Created: 2015-08-28 Last updated: 2017-12-04
    4. C-13 Chemical Shift in Natural Gas Hydrates from First-Principles Solid-State NMR Calculations
    Open this publication in new window or tab >>C-13 Chemical Shift in Natural Gas Hydrates from First-Principles Solid-State NMR Calculations
    2016 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 120, no 2, p. 1130-1136Article in journal (Refereed) Published
    Abstract [en]

    Natural gas hydrates (NGHs) are of interest both as a prospective energy resource and for possible technological applications. C-13 NMR technology is a powerful tool to characterize NGHs, and in this work, the trends and origins of C-13 NMR chemical shifts of hydrocarbon molecules in NGHs from quantum-chemical first-principles calculations on solid state phases are presented. The chemical shift is found to decrease as the size of the water cavities increases for single occupancy NGHs, and to increase as the amount of CH4 increases for the multioccupancy cases. In most cases, the chemical shift of NGHs monotonically increases as the external pressure increases. Furthermore, the chemical shift can be mainly attributed to the host-guest interaction together with a small contributions from water molecules for tight environments and mainly depends on host-guest interaction for loose environments. The theoretical results provide useful information for identification of the types of clathrate phases and guest molecules included in NGH samples taken from natural sites.

    Place, publisher, year, edition, pages
    AMER CHEMICAL SOC, 2016
    National Category
    Chemical Sciences
    Identifiers
    urn:nbn:se:liu:diva-125313 (URN)10.1021/acs.jpcc.5b11372 (DOI)000368754700035 ()
    Note

    Funding Agencies|Swedish Research Council (VR); Swedish Supercomputer Center (SNIC/NSC); China Scholarship Council [201206060016]

    Available from: 2016-02-24 Created: 2016-02-19 Last updated: 2017-11-30
    5. Raman and IR Spectra of Ice Ih and Ice XI with an Assessment of DFT Methods
    Open this publication in new window or tab >>Raman and IR Spectra of Ice Ih and Ice XI with an Assessment of DFT Methods
    2016 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 120, no 42, p. 11043-11051Article in journal (Refereed) Published
    Abstract [en]

    IR and Raman spectroscopic technology can be directly used to identify the occurrence of ferroelectric ice XI in laboratory or extraterrestrial settings. The performance of 16 different DFT methods applied on the ice Ih, VIII, IX, and XI crystal phases is evaluated. Based on a selected DFT computational scheme, the IR and Raman spectra of ice Ih and XI are derived and compared. When the spectra, both IR and Raman, of ice Ih and ice XI are compared, the librational vibrations are found to be the most affected by the proton ordering. The spectroscopic fingerprint of ice XI can be used to distinguish ferroelectric ice XI from ice Ih in the universe. Furthermore, the existence of only one kind of H-bond in ice Ih is demonstrated from the overlapping subspectra for different types of H-bonded pair configurations in 16 isomers of ice Ih, which provides an illustration to the historic debate on whether one or two kinds of H-bonds existed in ice.

    Place, publisher, year, edition, pages
    American Chemical Society (ACS), 2016
    National Category
    Theoretical Chemistry Inorganic Chemistry
    Identifiers
    urn:nbn:se:liu:diva-132452 (URN)10.1021/acs.jpcb.6b07001 (DOI)000386641500017 ()27690444 (PubMedID)
    Note

    Funding agencies: Swedish Research Council (VR); Swedish Supercomputer Center (SNIC/NSC); State Scholarship Fund of China Scholarship Council [201206060016]

    Available from: 2016-11-11 Created: 2016-11-11 Last updated: 2017-11-29Bibliographically approved
  • 40.
    Lueck, Jenna
    et al.
    Virginia Institute of Marine Science, USA; University of Maryland Center for Environmental Sciences, Solomons, USA.
    Dickhut, Rebecca
    Virginia Institute of Marine Science, USA.
    Cochran, Michele
    Virginia Institute of Marine Science, USA.
    Falconer, Renee
    Colorado School of Mines, Golden, USA.
    Kylin, Henrik
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Persistent organic pollutants in the Atlantic and southern oceans and oceanic atmosphere2017In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 583, p. 64-71Article in journal (Refereed)
    Abstract [en]

    Persistent organic pollutants (POPs) continue to cycle through the atmosphere and hydrosphere despite banned or severely restricted usages. Global scale analyses of POPs are challenging, but knowledge of the current distribution of these compounds is needed to understand the movement and long-term consequences of their global use. In the current study, air and seawater samples were collected Oct. 2007- Jan. 2008 aboard the Icebreaker Oden en route from Göteborg, Sweden to McMurdo Station, Antarctica. Both air and surface seawater samples consistently contained α-hexachlorocyclohexane (α-HCH), γ-HCH, hexachlorobenzene (HCB), α-Endosulfan, and polychlorinated biphenyls (PCBs). Sample concentrations for most POPs in air were higher in the northern hemisphere with the exception of HCB, which had high gas phase concentrations in the northern and southern latitudes and low concentrations near the equator. South Atlantic and Southern Ocean seawater has a high ratio of α-HCH to γ-HCH, indicating persisting levels from technical grade sources. The Atlantic and Southern Ocean continue to be net sinks for atmospheric α-, γ-HCH, and Endosulfan despite declining usage.

  • 41.
    Meng, Lingyin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Cranfield Univ, England.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Modulating Electrode Kinetics for Discrimination of Dopamine by a PEDOT:COOH Interface Doped with Negatively Charged Tricarboxylate2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 37, p. 34497-34506Article in journal (Refereed)
    Abstract [en]

    The rapidly developing field of conducting polymers in organic electronics has many implications for bioelectronics. For biosensing applications, tailoring the functionalities of the conducting polymers surface is an efficient approach to improve both sensitivity and selectivity. Here, we demonstrated a facile and economic approach for the fabrication of a high-density, negatively charged carboxylic-acid-group-functionalized PEDOT (PEDOT:COOH) using an inexpensive ternary carboxylic acid, citrate, as a dopant. The polymerization efficiency was significantly improved by the addition of LiClO4 as a supporting electrolyte yielding a dense PEDOT:COOH sensing interface. The resulting PEDOT:COOH interface had a high surface density of carboxylic acid groups of 0.129 mu mol/cm(2) as quantified by the toluidine blue O (TBO) staining technique. The dopamine response measured with the PEDOT:COOH sensing interface was characterized by cyclic voltammetry with a significantly reduced Delta E-p of 90 mV and a 3-fold increase in the I-pa value compared with those of the nonfunctionalized PEDOT sensing interface. Moreover, the cyclic voltammetry and electrochemical impedance spectroscopy results demonstrated the increased electrode kinetics and highly selective discrimination of dopamine (DA) in the presence of the interferents ascorbic acid (AA) and uric acid (UA), which resulted from the introduction of negatively charged carboxylic acid groups. The negatively charged carboxylic acid groups could favor the transfer, preconcentration, and permeation of positively charged DA to deliver improved sensing performance while repelling the negatively charged AA and UA interferents. The PEDOT:COOH interface facilitated measurement of dopamine over the range of 1-85 mu M, with a sensitivity of 0.228 mu A mu M-1, which is 4.1 times higher than that of a nonfunctionalized PEDOT electrode (0.055 mu A mu M-1). Our results demonstrate the feasibility of a simple and economic fabrication of a high-density PEDOT:COOH interface for chemical sensing, which also has the potential for coupling with other biorecognition molecules via carboxylic acid moieties for the development of a range of advanced PEDOT-based biosensors.

  • 42.
    Miglbauer, Eva
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Graz Univ Technol, Austria.
    Wojcik, Pawel Jerzy
    Redox Me AB, Sweden.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Single-compartment hydrogen peroxide fuel cells with poly(3,4-ethylenedioxythiophene) cathodes2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 84, p. 11873-11876Article in journal (Refereed)
    Abstract [en]

    Single-compartment hydrogen peroxide fuel cells have recently emerged as a promising energy conversion platform since H2O2 is a high energy-density liquid that functions as both fuel and oxidizer. Finding suitable electrocatalysts is challenging since most metallic electrodes also catalyze the disproportionation reaction of H2O2 into H2O and O-2, representing a significant loss mechanism in peroxide fuel cells. Herein we demonstrate that the conducting polymer poly(3,4-ethylenedioxythiophene), PEDOT, is a versatile electrocatalyst for peroxide fuel cells without generating losses due to disproportionation. We find that PEDOT is a cathodic catalyst for reduction of peroxide to water, performing at a level on par with the best reported inorganic catalysts. Using PEDOT as the cathode and nickel as the anode material, open circuit potentials in the range of 0.5-0.6 V are possible, with power densities of 0.20-0.30 mW cm(-2). We provide evidence to understand mechanistically how PEDOT functions as a catalyst for hydrogen peroxide reduction to water. The result of our efforts is a scalable hydrogen peroxide fuel cell cathode, which serves to demonstrate also the capabilities of organic semiconducting materials as electrocatalysts.

  • 43.
    Mohammed, Rania Elhadi Adam
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Alnoor, Hatim
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Elhag, Sami
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes2017In: OXIDE-BASED MATERIALS AND DEVICES VIII, SPIE - International Society for Optical Engineering, 2017, Vol. 10105, article id UNSP 101050XConference paper (Refereed)
    Abstract [en]

    Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photo-electrochemical water splitting using solar radiation.

  • 44.
    Nantaba, Florence
    et al.
    Makerere University, Uganda.
    Wasswa, John
    Makerere University, Uganda.
    Kylin, Henrik
    Linköping University, Department of Thematic Studies, Tema Environmental Change.
    Palm, Wolf-Ulrich
    Leuphana University of Lüneburg, Germany.
    Bouwman, Hindrik
    North-West University, South Africa.
    Kümmerer, Klaus
    Leuphana University of Lüneburg, Germany.
    Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda2020In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 239, article id 124642Article in journal (Refereed)
    Abstract [en]

    The occurrence of 24 pharmaceuticals (including; 15 antibiotics, three analgesic/anti-inflammatory drugs, three anti-epileptic/ antidepressant drugs, two beta blockers, and one lipid regulator) was investigated in 75 water samples collected from four bays in the Ugandan part of Lake Victoria. In addition, the potential environmental risk of the target pharmaceutical compounds to aquatic organisms in the aquatic ecosystem of Lake Victoria was assessed. Water samples were extracted using solid phase extraction and analyzed for pharmaceuticals using high- performance liquid chromatography coupled with triple quadrupole mass spectrometry (LC/MS/MS). Eighteen of the 24 pharmaceuticals occurred at quantifiable concentrations. Sulfamethoxazole (1-5600 ng L-1), trimethoprim (1-89 ng L-1), tetracycline (3-70 ng L-1), sulfacetamide (1-13 ng L-1), and ibuprofen (6-780 ng L-1) occurred at quantifiable concentrations in all water samples. Sulfamethazine (2-50 ng L-1), erythromycin (10-66 ng L-1), diclofenac (2-160 ng L-1), and carbamazepine (5-72 ng L-1) were only quantifiable in water samples from Murchison Bay. The highest concentrations of pharmaceuticals were found in Murchison Bay, the main recipient of sewage effluents, industrial and municipal waste from Kampala city via the Nakivubo channel. Ecotoxicological risk assessment showed that sulfamethoxazole, oxytetracycline, erythromycin, and diclofenac pose a high toxic risk to aquatic organisms in the lake, while ciprofloxacin, norfloxacin, and ibuprofen pose a medium risk. This study is the first of its kind to report the levels and ecotoxic risks of pharmaceutical compounds in Lake Victoria waters, of Uganda, and East Africa as a whole.

  • 45.
    Nemez, Emma
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Substitution of amaranth as dye in edge wicking test2013Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Stora Enso, a big Swedish-Finnish forest industry company, wants to find a substitute for the dye that is used in their edge wick analyzes. The dye amaranth, that is used today, is a classified substance that is unhealthy and hazardous. It causes irritation to the eyes, skin and respiratory system. Edge wick is a method to determine the amount of penetrated liquid into the unprotected edges of a packaging board (the surfaces are covered with plastic). It is important to analyze liquid penetration to know that the board will sustain the liquids that it might be exposed to, for example sterilizing liquid (hydrogen peroxide), juice or wine. The dye is used as coloring agent for colorless solutions to enable visual evaluation of the penetration. In the present study several colorants were screened and evaluated in edge wick tests with the standard test liquids used at Stora Enso. Machine, pilot and handmade boards were used in the tests. Surface tension of some test liquids was also determined, as it is important to know if the dyes change the liquid properties since this may influence the penetration. The result of the tests was that a new dye was found, Allura red AC. It has a similar chemical structure to amaranth and seems to act in the same way in different type of test conditions. The recommendation is that amaranth be substituted for allura red AC, since the latter is less hazardous and is not a classified substance.

  • 46.
    Nilsson, Marie-Louise
    et al.
    Vatten och miljö, SLU.
    Bengtsson, Staffan
    Vatten och miljö, SLU.
    Kylin, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Identification and determination of chlorinated paraffins using multivariate evaluation of gas chromatographic data2012In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 163, p. 142-148Article in journal (Refereed)
    Abstract [en]

    Chlorinated paraffins (CPs) were found in the biodegradable fraction of source separated waste from Uppsala, Sweden. We identified and quantified the CPs by multivariate evaluation of gas chromatography-electron capture detection chromatograms. Using principal component analyses (PCA) we identified different types of CP-formulations and also obtain quantitative data. PCA yielded better identifications of individual CP-formulations than visual comparison of chromatograms. Partial least squares regression gave good calibration curves of the standards, but did not work for the waste samples. No source of CPs could be identified in the waste collection chain, and as the waste samples seemed to contain at least two different CP-formulations the source was probably to be found in the waste material itself. The method was used to determine CPs in additional environmental samples, demonstrating that multivariate methods may be developed into a powerful tool for identification and quantification of complex mixture.

  • 47.
    Qayoom Mugheri, Abdul
    et al.
    Univ Sindh Jamshoro, Pakistan.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Aftab, Umair
    Mehran Univ Engn and Technol, Pakistan.
    Ishaq Abro, Muhammad
    Mehran Univ Engn and Technol, Pakistan.
    Chaudhry, Saleem Raza
    Univ Engn and Technol, Pakistan.
    Amaral, Luis
    Univ Lisbon, Portugal.
    Ibupoto, Zafar Hussain
    Univ Sindh Jamshoro, Pakistan.
    Co3O4/ NiO bifunctional electrocatalyst for water splitting2019In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 306Article in journal (Refereed)
    Abstract [en]

    The development of noble metal free and active bifunctional catalysts for water splitting in alkaline media is highly demanded but very challenging. Herein, synergetic effects developed between two nonprecious metal oxides, Co3O4 and NiO, are reported, with the resulting composite showing promising properties as a catalyst for alkaline water electrolysis. The activity of the composite material towards both the HER and the OER was enhanced and the dynamic potential decreased, as compared with its counterparts. Importantly, low Tafel slopes of 101 and 61 mVdec(-1) are found for the composite catalyst for OER and HER respectively. EIS measurements revealed a decreased impedance response of the composite dominated by the intermediate frequency relaxation, related to the adsorption of intermediates. Moreover, based on the structural features the improved catalytic activity of the composite is also due to high electroactive surface area, swift electron transfer kinetics, and excellent electrical chemical coupling between Co3O4 and NiO. (c) 2019 Elsevier Ltd. All rights reserved.

  • 48.
    Quinn, Laura
    et al.
    North-West University, South Africa.
    Polder, Anuscka
    Veterinary Institute, Norway.
    Roos, Claudine
    North-West University, South Africa.
    Kylin, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Løken, K
    Veterinary Institute, Norway.
    Skaare, Janneche Utne
    Veterinary Institute, Norway.
    Pieters, Rialet
    North-West University, South Africa.
    Bouwman, Henk
    North-West University, South Africa.
    Levels and Implications of Persistent Organic Pollutants and Other Contaminants in South Africa. Results from the "LIPOPSA" Project2011Conference paper (Other academic)
  • 49.
    Ravichandran, Ranjithkumar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Åstrand, C.
    KTH Royal Institute Technology, Sweden.
    Patra, Hirak Kumar
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Chotteau, V.
    KTH Royal Institute Technology, Sweden.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications2017In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, no 34, p. 21068-21078Article in journal (Refereed)
    Abstract [en]

    Hydrogels comprising natural extracellular matrix (ECM) components are very attractive as scaffolds for regenerative medicine applications due to their inherent biointeractive properties. Responsive materials that adapt to their surrounding environments and regulate transport of ions and bioactive molecules manifest significant advantages for biomedical applications. Although there are many exciting challenges, the opportunity to design, fabricate and engineer stimuli-responsive polymeric systems based on ECM components is particularly attractive for regenerative medicine. Here we describe a one-pot approach to fabricate in situ fast gellable intelligent ECM mimetic scaffolds, based on methacrylated collagen building blocks with mechanical properties that can be modulated in the kPa-MPa range and that are suitable for both soft and hard tissues. Physiochemical characterizations demonstrate their temperature and pH responsiveness, together with the structural and enzymatic resistance that make them suitable scaffolds for long-term use in regenerative medicine and biomedical applications. The multifunctionality of these hydrogels has been demonstrated as an in situ depot-forming delivery platform for the adjustable controlled release of proteins and small drug molecules under physiological conditions and as a structural support for adhesion, proliferation and metabolic activities of human cells. The results presented herein should be useful to the design and fabrication of tailor-made scaffolds with tunable properties that retain and exhibit sustained release of growth factors for promoting tissue regeneration.

  • 50.
    Rech, Jeromy J.
    et al.
    Univ N Carolina, NC 27599 USA.
    Bauer, Nicole
    Univ N Carolina, NC 27599 USA.
    Dirkes, David
    Univ N Carolina, NC 27599 USA.
    Kaplan, Joseph
    Univ N Carolina, NC 27599 USA.
    Peng, Zhengxing
    North Carolina State Univ, NC 27695 USA.
    Zhang, Huotian
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ye, Long
    North Carolina State Univ, NC 27695 USA.
    Liu, Shubin
    Univ N Carolina, NC 27599 USA.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ade, Harald
    North Carolina State Univ, NC 27695 USA.
    You, Wei
    Univ N Carolina, NC 27599 USA.
    The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells2019In: MATERIALS CHEMISTRY FRONTIERS, ISSN 2052-1537, Vol. 3, no 8, p. 1642-1652Article in journal (Refereed)
    Abstract [en]

    Newly developed fused-ring electron acceptors (FREAs) have proven to be an effective class of materials for extending the absorption window and boosting the efficiency of organic photovoltaics (OPVs). While numerous acceptors have been developed, there is surprisingly little structural diversity among high performance FREAs in literature. Of the high efficiency electron acceptors reported, the vast majority utilize derivatives of 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (INCN) as the acceptor moiety. It has been postulated that the high electron mobility exhibited by FREA molecules with INCN end groups is a result of close pi-pi stacking between the neighboring planar INCN groups, forming an effective charge transport pathway between molecules. To explore this as a design rationale for electron acceptors, we synthesized a new fused-ring electron acceptor, IDTCF, which has methyl substituents out of plane to the conjugated acceptor backbone. These methyl groups hinder packing and expand the pi-pi stacking distance by similar to 1 angstrom, but have little impact on the optical or electrochemical properties of the individual FREA molecule. The extra steric hindrance from the out of plane methyl substituents restricts packing and results in large amounts of geminate recombination, thus degrading the device performance. Our results show that intermolecular interactions (especially pi-pi stacking between end groups) play a crucial role in performance of FREAs. We demonstrated that the planarity of the acceptor unit is of paramount importance as even minor deviations in end group distance are enough to disrupt crystallinity and cripple device performance.

12 1 - 50 of 77
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf