liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 596
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbas, Muhammad
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    On the Implementation of Integer and Non-Integer Sampling Rate Conversion2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The main focus in this thesis is on the aspects related to the implementation of integer and non-integer sampling rate conversion (SRC). SRC is used in many communication and signal processing applications where two signals or systems having different sampling rates need to be interconnected. There are two basic approaches to deal with this problem. The first is to convert the signal to analog and then re-sample it at the desired rate. In the second approach, digital signal processing techniques are utilized to compute values of the new samples from the existing ones. The former approach is hardly used since the latter one introduces less noise and distortion. However, the implementation complexity for the second approach varies for different types of conversion factors. In this work, the second approach for SRC is considered and its implementation details are explored. The conversion factor in general can be an integer, a ratio of two integers, or an irrational number. The SRC by an irrational numbers is impractical and is generally stated for the completeness. They are usually approximated by some rational factor.

    The performance of decimators and interpolators is mainly determined by the filters, which are there to suppress aliasing effects or removing unwanted images. There are many approaches for the implementation of decimation and interpolation filters, and cascaded integrator comb (CIC) filters are one of them. CIC filters are most commonly used in the case of integer sampling rate conversions and often preferred due to their simplicity, hardware efficiency, and relatively good anti-aliasing (anti-imaging) characteristics for the first (last) stage of a decimation (interpolation). The multiplierless nature, which generally yields to low power consumption, makes CIC filters well suited for performing conversion at higher rate. Since these filters operate at the maximum sampling frequency, therefore, are critical with respect to power consumption. It is therefore necessary to have an accurate and efficient ways and approaches that could be utilized to estimate the power consumption and the important factors that are contributing to it. Switching activity is one such factor. To have a high-level estimate of dynamic power consumption, switching activity equations in CIC filters are derived, which may then be used to have an estimate of the dynamic power consumption. The modeling of leakage power is also included, which is an important parameter to consider since the input sampling rate may differ several orders of magnitude. These power estimates at higher level can then be used as a feed-back while exploring multiple alternatives.

    Sampling rate conversion is a typical example where it is required to determine the values between existing samples. The computation of a value between existing samples can alternatively be regarded as delaying the underlying signal by a fractional sampling period. The fractional-delay filters are used in this context to provide a fractional-delay adjustable to any desired value and are therefore suitable for both integer and non-integer factors. The structure that is used in the efficient implementation of a fractional-delay filter is know as Farrow structure or its modifications. The main advantage of the Farrow structure lies in the fact that it consists of fixed finite-impulse response (FIR) filters and there is only one adjustable fractional-delay parameter, used to evaluate a polynomial with the filter outputs as coefficients. This characteristic of the Farrow structure makes it a very attractive structure for the implementation. In the considered fixed-point implementation of the Farrow structure, closed-form expressions for suitable word lengths are derived based on scaling and round-off noise. Since multipliers share major portion of the total power consumption, a matrix-vector multiple constant multiplication approach is proposed to improve the multiplierless implementation of FIR sub-filters.

    The implementation of the polynomial part of the Farrow structure is investigated by considering the computational complexity of different polynomial evaluation schemes. By considering the number of operations of different types, critical path, pipelining complexity, and latency after pipelining, high-level comparisons are obtained and used to short list the suitable candidates. Most of these evaluation schemes require the explicit computation of higher order power terms. In the parallel evaluation of powers, redundancy in computations is removed by exploiting any possible sharing at word level and also at bit level. As a part of this, since exponents are additive under multiplication, an ILP formulation for the minimum addition sequence problem is proposed.

    List of papers
    1. Power Estimation of Recursive and Non-Recursive CIC Filters Implemented in Deep-Submicron Technology
    Open this publication in new window or tab >>Power Estimation of Recursive and Non-Recursive CIC Filters Implemented in Deep-Submicron Technology
    2010 (English)In: Proceedings of International Conference on Green Circuits and Systems (ICGCS), 2010, Date: 21-23 June, 2010, IEEE , 2010, p. 221-225Conference paper, Published paper (Refereed)
    Abstract [en]

    The power modeling of different realizations of cascaded integrator-comb (CIC) decimation filters has been a subject of several recent works. In this work we have extended these with modeling of leakage power, which is an important factor since the input sample rate may differ several orders of magnitude. Furthermore, we have pointed out the importance of the input wordlength on the comparison of recursive and nonrecursive implementations.

    Place, publisher, year, edition, pages
    IEEE, 2010
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-70451 (URN)10.1109/ICGCS.2010.5543063 (DOI)978-1-4244-6877-5 (ISBN)978-1-4244-6876-8 (ISBN)
    Conference
    International Conference on Green Circuits and Systems (ICGCS), June 21–23, Shanghai, China
    Available from: 2011-09-20 Created: 2011-09-08 Last updated: 2015-03-11Bibliographically approved
    2. Switching Activity Estimation of CIC Filter Integrators
    Open this publication in new window or tab >>Switching Activity Estimation of CIC Filter Integrators
    2010 (English)In: Proceedings of Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), 2010, Date:22-24 Sept. 2010, IEEE , 2010, p. 21-24Conference paper, Published paper (Refereed)
    Abstract [en]

    In this work, a method for estimation of the switching activity in integrators is presented. To achieve low power, it is always necessary to develop accurate and efficient methods to estimate the switching activity. The switching activities are then used to estimate the power consumption. In our work, the switching activity is first estimated for the general purpose integrators and then it is extended for the estimation of switching activity in cascaded integrators in CIC filters.

    Place, publisher, year, edition, pages
    IEEE, 2010
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-70452 (URN)10.1109/PRIMEASIA.2010.5604971 (DOI)978-1-4244-6736-5 (ISBN)978-1-4244-6735-8 (ISBN)
    Conference
    Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), 22-24 September, Shanghai, China
    Note
    ©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. MUHAMMAD ABBAS and Oscar Gustafsson, Switching Activity Estimation of CIC Filter Integrators, 2010, Asia Pacific Conf. on Postgraduate Research in Microelectronics and Electronics, Shanghai, China. http://dx.doi.org/10.1109/PRIMEASIA.2010.5604971 Available from: 2011-09-20 Created: 2011-09-08 Last updated: 2015-03-11Bibliographically approved
    3. Scaling of fractional delay filters based on the Farrow structure
    Open this publication in new window or tab >>Scaling of fractional delay filters based on the Farrow structure
    2009 (English)In: Proceedings of IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009, Piscataway: IEEE , 2009, p. 489-492Conference paper, Published paper (Refereed)
    Abstract [en]

    In this work we consider scaling of fractional delay filters using the Farrow structure. Based on the observation that the subfilters approximate the Taylor expansion of a differentiator, we derive estimates of the L2-norm scaling values at the outputs of each subfilter as well as at the inputs of each delay multiplier. The scaling values can then be used to derive suitable wordlengths in a fixed-point implementation.

    Place, publisher, year, edition, pages
    Piscataway: IEEE, 2009
    National Category
    Signal Processing
    Identifiers
    urn:nbn:se:liu:diva-51070 (URN)10.1109/ISCAS.2009.5117792 (DOI)000275929800123 ()978-1-4244-3827-3 (ISBN)
    Conference
    IEEE International Symposium on Circuits and Systems, 24-27 May 2009, Taipei,Taiwan
    Available from: 2009-10-15 Created: 2009-10-15 Last updated: 2018-09-01Bibliographically approved
    4. Computational and Implementation Complexity of Polynomial Evaluation Schemes
    Open this publication in new window or tab >>Computational and Implementation Complexity of Polynomial Evaluation Schemes
    2011 (English)In: Proceedings of NORCHIP, 2011 Date:14-15 Nov. 2011, IEEE conference proceedings, 2011, p. 1-6Conference paper, Published paper (Refereed)
    Abstract [en]

    In this work, we consider the computational complexity of different polynomial evaluation schemes. By considering the number of operations of different types, critical path, pipelining complexity, and latency after pipelining, high-level comparisons are obtained. These can then be used to short list suitable candidates for an implementation given the specifications. Not only multiplications are considered, but they are divided into data-data multiplications, squarers, and data-coefficient multiplications, as the latter can be optimized depending on implementation architecture and application.

    Place, publisher, year, edition, pages
    IEEE conference proceedings, 2011
    Keywords
    Adders, Computer architecture, Delay, Filtering algorithms, ISO, Pipeline processing, Polynomials
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-73935 (URN)10.1109/NORCHP.2011.6126735 (DOI)978-1-4577-0515-1 (ISBN)978-1-4577-0514-4 (ISBN)
    Conference
    NORCHIP 2011. The Nordic Microelectronics event, 29th Norchip Conference 14-15 November 2011, Lund, Sweden
    Available from: 2012-01-17 Created: 2012-01-17 Last updated: 2015-03-11Bibliographically approved
    5. Low-Complexity Parallel Evaluation of Powers Exploiting Bit-Level Redundancy
    Open this publication in new window or tab >>Low-Complexity Parallel Evaluation of Powers Exploiting Bit-Level Redundancy
    2010 (English)In: Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2010, 7-10 Nov. 2010 / [ed] Michael B. Matthews, Washington, DC, USA: IEEE Computer Society , 2010, p. 1168-1172Conference paper, Published paper (Refereed)
    Abstract [en]

    In this work, we investigate the problem of computing any requested set of power terms in parallel using summations trees. This problem occurs in applications like polynomial approximation, Farrow filters (polynomial evaluation part) etc. In the proposed technique, the partial product of each power term is initially computed independently. A redundancy check is then made in each and among all partial products matrices at bit level. The redundancy here relates to the fact that same three partial products may be present in more than one columns, and, hence, can be mapped to the same full adder. The proposed algorithm is tested for different sets of powers and wordlengths to exploit the sharing potential.

    Place, publisher, year, edition, pages
    Washington, DC, USA: IEEE Computer Society, 2010
    Series
    Asilomar Conference on Signals, Systems and Computers. Conference Record, ISSN 1058-6393
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-70453 (URN)10.1109/ACSSC.2010.5757714 (DOI)978-1-4244-9722-5 (ISBN)
    Conference
    Signals, Systems and Computers (ASILOMAR), 2010, 7-10 Nov. 2010 , Pacific Grove, CA, USA
    Available from: 2011-09-20 Created: 2011-09-08 Last updated: 2015-03-11Bibliographically approved
    6. Integer Linear Programming Modeling of Addition Sequences With Additional Constraints for Evaluation of Power Terms
    Open this publication in new window or tab >>Integer Linear Programming Modeling of Addition Sequences With Additional Constraints for Evaluation of Power Terms
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    In this work, an integer linear programming (ILP) based model is proposed for the computation of a minimal cost addition sequence for a given set of integers. Since exponents are additive under multiplication, the minimal length addition sequence will provide an optimal solution for the evaluation of a requested set of power terms. This in turn finds application in, e.g., window-based exponentiation for cryptography and polynomial evaluation. Not only is an optimal model proposed, the model is extended to consider different costs for multipliers and squarers as well as controlling the depth of the resulting addition sequence.

    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-73936 (URN)
    Available from: 2012-01-17 Created: 2012-01-17 Last updated: 2015-03-11Bibliographically approved
    7. Switching Activity Estimation of DDFS Phase Accumulators
    Open this publication in new window or tab >>Switching Activity Estimation of DDFS Phase Accumulators
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    In this letter, equations for the one’s probability and switching activities for direct digital frequency synthesis (DDFS) phase accumulators are derived. These results are useful for obtaining good accuracy estimated of both leakage and dynamic power consumption for the phase accumulator and the phase-to-magnitude converter.

    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-73937 (URN)
    Available from: 2012-01-17 Created: 2012-01-17 Last updated: 2015-03-11Bibliographically approved
  • 2.
    Abbas, Muhammad
    et al.
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Johansson, Håkan
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    On the Fixed-Point Implementation of Fractional-Delay Filters Based on the Farrow Structure2013In: IEEE Transactions on Circuits and Systems Part 1: Regular Papers, ISSN 1549-8328, E-ISSN 1558-0806, Vol. 60, no 4, p. 926-937Article in journal (Refereed)
    Abstract [en]

    In this paper, the fixed-point implementation of adjustable fractional-delay filters using the Farrow structure is considered. Based on the observation that the sub-filters approximate differentiators, closed-form expressions for the L-2-norm scaling values at the outputs of each sub-filter as well as at the inputs of each delay multiplier are derived. The scaling values can then be used to derive suitable word lengths by also considering the round-off noise analysis and optimization. Different approaches are proposed to derive suitable word lengths including one based on integer linear programming, which always gives an optimal allocation. Finally, a new approach for multiplierless implementation of the sub-filters in the Farrow structure is suggested. This is shown to reduce register complexity and, for most word lengths, require less number of adders and subtracters when compared to existing approaches.

  • 3.
    Abbas, Muhammad
    et al.
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Johansson, Håkan
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Scaling of fractional delay filters based on the Farrow structure2009In: Proceedings of IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009, Piscataway: IEEE , 2009, p. 489-492Conference paper (Refereed)
    Abstract [en]

    In this work we consider scaling of fractional delay filters using the Farrow structure. Based on the observation that the subfilters approximate the Taylor expansion of a differentiator, we derive estimates of the L2-norm scaling values at the outputs of each subfilter as well as at the inputs of each delay multiplier. The scaling values can then be used to derive suitable wordlengths in a fixed-point implementation.

  • 4.
    Adam, Wettring
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Adaptive Filtering and Nonlinear Models for Post-processing of Weather Forecasts2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Kalman filters have been used by SMHI to improve the quality of their forecasts. Until now they have used a linear underlying model to do this. In this thesis it is investigated whether the performance can be improved by the use of nonlinear models such as polynomials and neural networks. The results suggest that an improvement is hard to achieve by this approach and that it is likely not worth the effort to implement a nonlinear model.

  • 5.
    Ahlberg, Jesper
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems.
    Blomquist, Esbjörn
    Linköping University, Department of Electrical Engineering, Vehicular Systems.
    Online Identification of Running Resistance and Available Adhesion of Trains2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Two important physical aspects that determine the performance of a running train are the total running resistance that acts on the whole train moving forward, and the available adhesion (utilizable wheel-rail-friction) for propulsion and breaking. Using the measured and available signals, online identification of the current running resistance and available adhesion and also prediction of future values for a distance ahead of the train, is desired. With the aim to enhance the precision of those calculations, this thesis investigates the potential of online identification and prediction utilizing the Extended Kalman Filter.

    The conclusions are that problems with observability and sensitivity arise, which result in a need for sophisticated methods to numerically derive the acceleration from the velocity signal. The smoothing spline approximation is shown to provide the best results for this numerical differentiation. Sensitivity and its need for high accuracy, especially in the acceleration signal, results in a demand of higher sample frequency. A desire for other profound ways of collecting further information, or to enhance the models, arises with possibilities of future work in the field.

  • 6.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Image Coding. Linköping University, The Institute of Technology.
    An active model for facial feature tracking2002In: EURASTP journal an applied signal processing, ISSN 1110-8657, E-ISSN 1687-0433, Vol. 2002, no 6, p. 566-571Article in journal (Refereed)
    Abstract [en]

    We present a system for finding and tracking a face and extract global and local animation parameters from a video sequence. The system uses an initial colour processing step for finding a rough estimate of the position, size, and inplane rotation of the face, followed by a refinement step drived by an active model. The latter step refines the previous estimate, and also extracts local animation parameters. The system is able to track the face and some facial features in near real-time, and can compress the result to a bitstream compliant to MPEG-4 face and body animation.

  • 7.
    Ahlberg, Jörgen
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. FOI, SE-58111 Linkoping, Sweden.
    Optimizing Object, Atmosphere, and Sensor Parameters in Thermal Hyperspectral Imagery2017In: IEEE Transactions on Geoscience and Remote Sensing, ISSN 0196-2892, E-ISSN 1558-0644, Vol. 55, no 2, p. 658-670Article in journal (Refereed)
    Abstract [en]

    We address the problem of estimating atmosphere parameters (temperature and water vapor content) from data captured by an airborne thermal hyperspectral imager and propose a method based on linear and nonlinear optimization. The method is used for the estimation of the parameters (temperature and emissivity) of the observed object as well as sensor gain under certain restrictions. The method is analyzed with respect to sensitivity to noise and the number of spectral bands. Simulations with synthetic signatures are performed to validate the analysis, showing that the estimation can be performed with as few as 10-20 spectral bands at moderate noise levels. The proposed method is also extended to exploit additional knowledge, for example, measurements of atmospheric parameters and sensor noise. Additionally, we show how to extend the method in order to improve spectral calibration.

  • 8.
    Ahlberg, Jörgen
    et al.
    Division of Information Systems, Swedish Defence Research Agency (FOI), Linköping, Sweden.
    Pandzic, Igor
    Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia.
    Facial Action Tracking2011In: Handbook of Face Recognition / [ed] Stan Z. Li, Anil K. Jain, London: Springer London, 2011, 2, p. 461-486Chapter in book (Refereed)
    Abstract [en]

    This chapter explains the basics of parametric face models used for face and facial action tracking as well as fundamental strategies and methodologies for tracking. A few tracking algorithms serving as pedagogical examples are described in more detail.

  • 9.
    Ahlström, Christer
    et al.
    Linköping University, Department of Biomedical Engineering.
    Liljefeldt, Olle
    Hult, Peter
    Linköping University, Department of Biomedical Engineering.
    Ask, Per
    Linköping University, Department of Biomedical Engineering.
    Heart sound cancellation from lung sound recordings using recurrence time statistics and nonlinear prediction.2005In: Medicinteknikdagarna, 2005, Vol. 12, p. 812-815Conference paper (Other academic)
    Abstract [en]

    Heart sounds (HS) obscure the interpretation of lung sounds (LS). This letter presents a new method to detect and remove this undesired disturbance. The HS detection algorithm is based on a recurrence time statistic that is sensitive to changes in a reconstructed state space. Signal segments that are found to contain HS are removed, and the arising missing parts are replaced with predicted LS using a nonlinear prediction scheme. The prediction operates in the reconstructed state space and uses an iterated integrated nearest trajectory algorithm. The HS detection algorithm detects HS with an error rate of 4% false positives and 8% false negatives. The spectral difference between the reconstructed LS signal and an LS signal with removed HS was 0 34 0 25, 0 50 0 33, 0 46 0 35, and 0 94 0 64 dB/Hz in the frequency bands 20–40, 40–70, 70–150, and 150–300 Hz, respectively. The cross-correlation index was found to be 99.7%, indicating excellent similarity between actual LS and predicted LS. Listening tests performed by a skilled physician showed high-quality auditory results.

  • 10.
    Ahlström, Per
    Linköping University, Department of Electrical Engineering. Linköping University, The Institute of Technology.
    Signalprediktering i vitt gaussiskt brus med hjälp av ett adaptivt signalanpassat filter1976Report (Other academic)
    Abstract [sv]

    Ett signalanpassat filter har ett impulssvar som är den exiterandesignalens spegelbild . Ett dylikt filter maximerar vid en viss tidpunkt signalbrusförhållandet på utgången.

    Ett adaptivt transversalfilter styrt av en gradientkännande algoritm, vilken maximerar signalbrusförhållandet på filterutgången, har studerats. Det spegelvända impulssvaret har använts som prediktion av signalen. Denna prediktion har, vid simulering gjord på dator, ej visat sig vara bättre än en klassisk prediktion med en ren summering av brusstörda upplagor av signalen. Inte ens då dylika summerade upplagor av den brusstörda signalenanvänts som insignal till filtret har signalprediktionen via filtrets impulssvar uppvisat ett lägre kvadratiskt medelfel än d en klassiska.

  • 11.
    Ahmad, Shakeel
    et al.
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Dabrowski, Jerzy
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Cancellation of Spurious Spectral Components in One-Bit Stimuli Generator2010In: Proceedings of IEEEInternational Conference on Signals and Electronic Systems, (ICSES 10) / [ed] Andrzej Pułka and Tomasz Golonek, IEEE , 2010, p. 393-396Conference paper (Refereed)
    Abstract [en]

    This work presents a cancellation technique of non-linear distortion components of one-bit digital stimulus sequence which is generated in software by a ΣΔ modulator. The stimulus is stored in a cyclic memory and applied to a circuit under test through a driving buffer and a simple lowpass reconstruction filter. The distortion components originate from buffer imperfections which result in a possible asymmetry between rising and falling edges of a NRTZ waveform representing the encoded stimulus. We show that the distortion components can be cancelled by using a simple predistortion technique. In addition an on-chip DC-calibrated ADC can be used to identify the second-order nonlinear products of the driving buffer. This procedure allows for cancellation of all the second-order distortions before the actual test and it can be extended to the third order terms as well.

  • 12.
    Ahmed Aamir, Syed
    et al.
    Linköping University, Department of Electrical Engineering. Linköping University, The Institute of Technology.
    Harikumar, Prakash
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Wikner, Jacob J
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Frequency compensation of high-speed, low-voltage CMOS multistage amplifiers2013In: IEEE International Symposium on Circuits and Systems (ISCAS), 2013, IEEE conference proceedings, 2013, p. 381-384Conference paper (Refereed)
    Abstract [en]

    This paper presents the frequency compensation of high-speed, low-voltage multistage amplifiers. Two frequency compensation techniques, the Nested Miller Compensation with Nulling Resistors (NMCNR) and Reversed Nested Indirect Compensation (RNIC), are discussed and employed on two multistage amplifier architectures. A four-stage pseudo-differential amplifier with CMFF and CMFB is designed in a 1.2 V, 65-nm CMOS process. With NMCNR, it achieves a phase margin (PM) of 59° with a DC gain of 75 dB and unity-gain frequency (fug) of 712 MHz. With RNIC, the same four-stage amplifier achieves a phase margin of 84°, DC gain of 76 dB and fug of 2 GHz. Further, a three-stage single-ended amplifier is designed in a 1.1-V, 40-nm CMOS process. The three-stage OTA with RNIC achieves PM of 81°, DC gain of 80 dB and fug of 770 MHz. The same OTA achieves PM of 59° with NMCNR, while maintaining a DC gain of 75 dB and fug of 262 MHz. Pole-splitting, to achieve increased stability, is illustrated for both compensation schemes. Simulations illustrate that the RNIC scheme achieves much higher PM and fug for lower values of compensation capacitance compared to NMCNR, despite the growing number of low voltage amplifier stages.

  • 13.
    Aihara, Shin Ichi
    et al.
    Tokyo University of Science, Japan.
    Bagchi, Arunabha
    University of Twente, Enschede, Netherlands.
    Saha, Saikat
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Adaptive Filtering for Stochastic Volatility by Using Exact Sampling2013In: 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2013), 2013, p. 326-335Conference paper (Refereed)
    Abstract [en]

    We study the sequential identification problem for Bates stochastic volatility model, which is widely used as the model of a stock in finance. By using the exact simulation method, a particle filter for estimating stochastic volatility is constructed. The systems parameters are sequentially estimated with the aid of parallel filtering algorithm. To improve the estimation performance for unknown parameters, the new resampling procedure is proposed. Simulation studies for checking the feasibility of the developed scheme are demonstrated.

  • 14.
    Akhlaghpasand, Hossein
    et al.
    Iran Univ Sci and Technol, Iran.
    Razavizadeh, S. Mohammad
    Iran Univ Sci and Technol, Iran.
    Björnson, Emil
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Do, Tan Tai
    Ericsson AB, Sweden.
    Jamming Detection in Massive MIMO Systems2018In: IEEE Wireless Communications Letters, ISSN 2162-2337, E-ISSN 2162-2345, Vol. 7, no 2, p. 242-245Article in journal (Refereed)
    Abstract [en]

    This letter considers the physical layer security of a pilot-based massive multiple-input multiple-output (MaMIMO) system in presence of a multi-antenna jammer. We propose a new jamming detection method that makes use of a generalized likelihood ratio tes

  • 15.
    Akif, Ahmed
    Linköping University, Department of Electrical Engineering, Computer Engineering.
    FIR Filter Features on FPGA2018Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Finite-length impulse response (FIR) filters are one of the most commonly used digital signal processing algorithms used nowadays where a FPGA is the device used to implement it. The continued development of the FPGA device through the insertion of dedicated blocks raised the need to study the advantages offered by different FPGA families. The work presented in this thesis study the special features offered by FPGAs for FIR filters and introduce a cost model of resource utilization. The used method consist of several stages including reading, classification of features and generating coefficients. The results show that FPGAs have common features but also specific differences in features as well as resource utilization. It has been shown that there is misconception when dealing with FPGAs when it comes to FIR filter as compared to ASICs.

  • 16.
    Alam, Syed Asad
    et al.
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Design of Finite Word Length Linear-Phase FIR Filters inthe Logarithmic Number System Domain2014In: VLSI design (Print), ISSN 1065-514X, E-ISSN 1563-5171, Vol. 2014, no 217495Article in journal (Refereed)
    Abstract [en]

    Logarithmic number system (LNS) is an attractive alternative to realize finite-length impulse response filters because ofmultiplication in the linear domain being only addition in the logarithmic domain. In the literature, linear coefficients are directlyreplaced by the logarithmic equivalent. In this paper, an approach to directly optimize the finite word length coefficients in theLNS domain is proposed. This branch and bound algorithm is implemented based on LNS integers and several different branchingstrategies are proposed and evaluated. Optimal coefficients in the minimax sense are obtained and compared with the traditionalfinite word length representation in the linear domain as well as using rounding. Results show that the proposed method naturallyprovides smaller approximation error compared to rounding. Furthermore, they provide insights into finite word length propertiesof FIR filters coefficients in the LNS domain and show that LNS FIR filters typically provide a better approximation error comparedto a standard FIR filter.

  • 17.
    Alam, Syed Asad
    et al.
    Linköping University, Department of Electrical Engineering, Computer Engineering. Linköping University, Faculty of Science & Engineering.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Computer Engineering. Linköping University, Faculty of Science & Engineering.
    Generalized Division-Free Architecture and Compact Memory Structure for Resampling in Particle Filters2015In: 2015 European Conference on Circuit Theory and Design (ECCTD), IEEE Press, 2015, p. 416-419Conference paper (Refereed)
    Abstract [en]

    The most challenging step of implementing particle filtering is the resampling step which replicates particles with large weights and discards those with small weights. In this paper, we propose a generic architecture for resampling which uses double multipliers to avoid normalization divisions and make the architecture  equally efficient for non-powers-of-two number of particles. Furthermore, the complexity of resampling is greatly affected by the size of memories used to store weights. We illustrate that by storing the original weights instead of their cumulative sum and calculating them online reduces the total complexity, in terms of area, ranging from 21% to 45%, while giving up to 50% reduction in memory usage.

  • 18.
    Alam, Syed Asad
    et al.
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Implementation of Narrow-Band Frequency-Response Masking for Efficient Narrow Transition Band FIR Filters on FPGAs2011In: NORCHIP, 2011, IEEE conference proceedings, 2011, p. 1-4Conference paper (Refereed)
    Abstract [en]

    The complexity of narrow transition band FIR filters is highand can be reduced by using frequency response masking (FRM) techniques. Thesetechniques use a combination of periodic model filters and masking filters. Inthis paper, we show that time-multiplexed FRM filters achieve lowercomplexity, not only in terms of multipliers, but also logic elements compared to time-multiplexed singlestage filters. The reduced complexity also leads to a lower power consumption. Furthermore, we show that theoptimal period of the model filter is dependent on the time-multiplexing factor.

  • 19.
    Alickovic, Emina
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Subasi, Abdulhamit
    Effat Univ, Saudi Arabia.
    Ensemble SVM Method for Automatic Sleep Stage Classification2018In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 67, no 6, p. 1258-1265Article in journal (Refereed)
    Abstract [en]

    Sleep scoring is used as a diagnostic technique in the diagnosis and treatment of sleep disorders. Automated sleep scoring is crucial, since the large volume of data should be analyzed visually by the sleep specialists which is burdensome, time-consuming tedious, subjective, and error prone. Therefore, automated sleep stage classification is a crucial step in sleep research and sleep disorder diagnosis. In this paper, a robust system, consisting of three modules, is proposed for automated classification of sleep stages from the single-channel electroencephalogram (EEG). In the first module, signals taken from Pz-Oz electrode were denoised using multiscale principal component analysis. In the second module, the most informative features are extracted using discrete wavelet transform (DWT), and then, statistical values of DWT subbands are calculated. In the third module, extracted features were fed into an ensemble classifier, which can be called as rotational support vector machine (RotSVM). The proposed classifier combines advantages of the principal component analysis and SVM to improve classification performances of the traditional SVM. The sensitivity and accuracy values across all subjects were 84.46% and 91.1%, respectively, for the five-stage sleep classification with Cohens kappa coefficient of 0.88. Obtained classification performance results indicate that, it is possible to have an efficient sleep monitoring system with a single-channel EEG, and can be used effectively in medical and home-care applications.

  • 20.
    Almqvist, Erik
    Linköping University, Department of Electrical Engineering, Automatic Control.
    Airborne mapping using LIDAR2010Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Mapping is a central and common task in robotics research. Building an accurate map without human assistance provides several applications such as space missions, search and rescue, surveillance and can be used in dangerous areas. One application for robotic mapping is to measure changes in terrain volume. In Sweden there are over a hundred landfills that are regulated by laws that says that the growth of the landfill has to be measured at least once a year.

    In this thesis, a preliminary study of methods for measuring terrain volume by the use of an Unmanned Aerial Vehicle (UAV) and a Light Detection And Ranging (LIDAR) sensor is done. Different techniques are tested, including data merging strategies and regression techniques by the use of Gaussian Processes. In the absence of real flight scenario data, an industrial robot has been used fordata acquisition. The result of the experiment was successful in measuring thevolume difference between scenarios in relation to the resolution of the LIDAR. However, for more accurate volume measurements and better evaluation of the algorithms, a better LIDAR is needed.

  • 21.
    Alwan, Abdulrahman
    Linköping University, Department of Electrical Engineering, Information Coding.
    Implementation of Wavelet-Kalman Filtering Technique for Auditory Brainstem Response2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Auditory brainstem response (ABR) evaluation has been one of the most reliable methods for evaluating hearing loss. Clinically available methods for ABR tests require averaging for a large number of sweeps (~1000-2000) in order to obtain a meaningful ABR signal, which is time consuming.  This study proposes a faster new method for ABR filtering based on wavelet-Kalman filter that is able to produce a meaningful ABR signal with less than 500 sweeps. The method is validated against ABR data acquired from 7 normal hearing subjects with different stimulus intensity levels, the lowest being 30 dB NHL. The proposed method was able to filter and produce a readable ABR signal using 400 sweeps; other ABR signal criteria were also presented to validate the performance of the proposed method.

  • 22.
    Andersson, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Electronics System.
    Olsson, Christian
    Linköping University, Department of Electrical Engineering, Electronics System.
    Linearization of Power Amplifier using Digital Predistortion, Implementation on FPGA2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The purpose of this thesis is to linearize a power amplifier using digital predistortion. A power amplifier is a nonlinear system, meaning that when fed with a pure input signal the output will be distorted. The idea behind digital predistortion is to distort the signal before feeding it to the power amplifier. The combined distortions from the predistorter and the power amplifier will then ideally cancel each other. In this thesis, two different approaches are investigated and implemented on an FPGA. The first approach uses a nonlinear model that tries to cancel out the nonlinearities of the power amplifier. The second approach is model-free and instead makes use of a look-up table that maps the input to a distorted output. Both approaches are made adaptive so that the parameters are continuously updated using adaptive algorithms. First the two approaches are simulated and tested thoroughly with different parameters and with a power amplifier model extracted from the real amplifier. The results are shown satisfactory in the simulations, giving good linearization for both the model and the model-free technique. The two techniques are then implemented on an FPGA and tested on the power amplifier. Even though the results are not as well as in the simulations, the system gets more linear for both the approaches. The results vary widely due to different circumstances such as input frequency and power. Typically, the distortions can be attenuated with around 10 dB. When comparing the two techniques with each other, the model-free method shows slightly better results.

  • 23.
    Andersson, Fredrik
    Linköping University, Department of Electrical Engineering.
    Determining recording time of digital soundrecordings using the ENF criterion2009Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In forensic investigations, verification of digital recordings is an important as-pect. There are numerous methods to verify authentication of recordings, but itis difficult to determine when the media was recorded. By studying the electricalnetwork frequency, one can find a unique signature and then match the recordingto this signature. By matching a recorded signal to a database, which contains allnecessary information, one can find the time when the recording was made.

  • 24.
    Andersson, Kenneth
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Westin, Carl-Fredrik
    Laboratory of Mathematics in Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, USA.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Prediction from off-grid samples using continuous normalized convolution2007In: Signal Processing, ISSN 0165-1684, E-ISSN 1872-7557, Vol. 87, no 3, p. 353-365Article in journal (Refereed)
    Abstract [en]

    This paper presents a novel method for performing fast estimation of data samples on a desired output grid from samples on an irregularly sampled grid. The output signal is estimated using integration of signals over a neighbourhood employing a local model of the signal using discrete filters. The strength of the method is demonstrated in motion compensation examples by comparing to traditional techniques.

  • 25.
    Andersson, Mats
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Burdakov, Oleg
    Linköping University, Department of Mathematics, Optimization . Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Zikrin, Spartak
    Linköping University, Department of Mathematics. Linköping University, The Institute of Technology.
    Sparsity Optimization in Design of Multidimensional Filter Networks2013Report (Other academic)
    Abstract [en]

    Filter networks is a powerful tool used for reducing the image processing time, while maintaining its reasonably high quality.They are composed of sparse sub-filters whose low sparsity ensures fast image processing.The filter network design is related to solvinga sparse optimization problem where a cardinality constraint bounds above the sparsity level.In the case of sequentially connected sub-filters, which is the simplest network structure of those considered in this paper, a cardinality-constrained multilinear least-squares (MLLS) problem is to be solved. If to disregard the cardinality constraint, the MLLS is typically a large-scale problem characterized by a large number of local minimizers. Each of the local minimizers is singular and non-isolated.The cardinality constraint makes the problem even more difficult to solve.An approach for approximately solving the cardinality-constrained MLLS problem is presented.It is then applied to solving a bi-criteria optimization problem in which both thetime and quality of image processing are optimized. The developed approach is extended to designing filter networks of a more general structure. Its efficiency is demonstrated by designing certain 2D and 3D filter networks. It is also compared with the existing approaches.

  • 26.
    Andersson Naesseth, Christian
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Vision and Radar Sensor Fusion for Advanced Driver Assistance Systems2013Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The World Health Organization predicts that by the year 2030, road traffic injuries will be one of the top five leading causes of death. Many of these deaths and injuries can be prevented by driving cars properly equipped with state-of-the-art safety and driver assistance systems. Some examples are auto-brake and auto-collision avoidance which are becoming more and more popular on the market today. A recent study by a Swedish insurance company has shown that on roadswith speeds up to 50 km/h an auto-brake system can reduce personal injuries by up to 64 percent. In fact in an estimated 40 percent of crashes, the auto-brake reduced the effects to the degree that no personal injury was sustained.

    It is imperative that these so called Advanced Driver Assistance Systems, to be really effective, have good situational awareness. It is important that they have adequate information of the vehicle’s immediate surroundings. Where are other cars, pedestrians or motorcycles relative to our own vehicle? How fast are they driving and in which lane? How is our own vehicle driving? Are there objects in the way of our own vehicle’s intended path? These and many more questions can be answered by a properly designed system for situational awareness.

    In this thesis we design and evaluate, both quantitatively and qualitatively, sensor fusion algorithms for multi-target tracking. We use a combination of camera and radar information to perform fusion and find relevant objects in a cluttered environment. The combination of these two sensors is very interesting because of their complementary attributes. The radar system has high range resolution but poor bearing resolution. The camera system on the other hand has a very high bearing resolution. This is very promising, with the potential to substantially increase the accuracy of the tracking system compared to just using one of the two. We have also designed algorithms for path prediction and a first threat awareness logic which are both qualitively evaluated.

  • 27.
    Andersson, Thord
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Läthén, Gunnar
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Lenz, Reiner
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Modified Gradient Search for Level Set Based Image Segmentation2013In: IEEE Transactions on Image Processing, ISSN 1057-7149, E-ISSN 1941-0042, Vol. 22, no 2, p. 621-630Article in journal (Refereed)
    Abstract [en]

    Level set methods are a popular way to solve the image segmentation problem. The solution contour is found by solving an optimization problem where a cost functional is minimized. Gradient descent methods are often used to solve this optimization problem since they are very easy to implement and applicable to general nonconvex functionals. They are, however, sensitive to local minima and often display slow convergence. Traditionally, cost functionals have been modified to avoid these problems. In this paper, we instead propose using two modified gradient descent methods, one using a momentum term and one based on resilient propagation. These methods are commonly used in the machine learning community. In a series of 2-D/3-D-experiments using real and synthetic data with ground truth, the modifications are shown to reduce the sensitivity for local optima and to increase the convergence rate. The parameter sensitivity is also investigated. The proposed methods are very simple modifications of the basic method, and are directly compatible with any type of level set implementation. Downloadable reference code with examples is available online.

  • 28.
    Andersson, Viktor
    Linköping University, Department of Electrical Engineering, Computer Vision.
    Semantic Segmentation: Using Convolutional Neural Networks and Sparse dictionaries2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The two main bottlenecks using deep neural networks are data dependency and training time. This thesis proposes a novel method for weight initialization of the convolutional layers in a convolutional neural network. This thesis introduces the usage of sparse dictionaries. A sparse dictionary optimized on domain specific data can be seen as a set of intelligent feature extracting filters. This thesis investigates the effect of using such filters as kernels in the convolutional layers in the neural network. How do they affect the training time and final performance?

    The dataset used here is the Cityscapes-dataset which is a library of 25000 labeled road scene images.The sparse dictionary was acquired using the K-SVD method. The filters were added to two different networks whose performance was tested individually. One of the architectures is much deeper than the other. The results have been presented for both networks. The results show that filter initialization is an important aspect which should be taken into consideration while training the deep networks for semantic segmentation.

  • 29.
    Andreu-Cabedo, Yasmina
    et al.
    University of Central Lancashire, England.
    Castellano, Pedro
    University of Central Lancashire, England.
    Colantonio, Sara
    National Research Council Italy, Italy.
    Coppini, Giuseppe
    National Research Council Italy, Italy.
    Favilla, Riccardo
    National Research Council Italy, Italy.
    Germanese, Danila
    National Research Council Italy, Italy.
    Giannakakis, Giorgos
    Fdn Research and Technology, Greece.
    Giorgi, Daniela
    National Research Council Italy, Italy.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Marraccini, Paolo
    National Research Council Italy, Italy.
    Martinelli, Massimo
    National Research Council Italy, Italy.
    Matuszewski, Bogdan
    University of Central Lancashire, England.
    Milanic, Matijia
    Norvegian University of Science and Technology, Norway.
    Pascali, Mariantonietta
    National Research Council Italy, Italy.
    Pediaditis, Mattew
    Fdn Research and Technology, Greece.
    Raccichini, Giovanni
    National Research Council Italy, Italy.
    Randeberg, Lise
    Norvegian University of Science and Technology, Norway.
    Salvetti, Ovidio
    National Research Council Italy, Italy.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    MIRROR MIRROR ON THE WALL... AN INTELLIGENT MULTISENSORY MIRROR FOR WELL-BEING SELF-ASSESSMENT2015In: 2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA and EXPO (ICME), IEEE , 2015Conference paper (Refereed)
    Abstract [en]

    The face reveals the healthy status of an individual, through a combination of physical signs and facial expressions. The project SEMEOTICONS is translating the semeiotic code of the human face into computational descriptors and measures, automatically extracted from videos, images, and 3D scans of the face. SEMEOTICONS is developing a multisensory platform, in the form of a smart mirror, looking for signs related to cardio-metabolic risk. The goal is to enable users to self-monitor their well-being status over time and improve their life-style via tailored user guidance. Building the multisensory mirror requires addressing significant scientific and technological challenges, from touch-less data acquisition, to real-time processing and integration of multimodal data.

  • 30.
    Ardeshiri, Tohid
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Analytical Approximations for Bayesian Inference2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Bayesian inference is a statistical inference technique in which Bayes’ theorem is used to update the probability distribution of a random variable using observations. Except for few simple cases, expression of such probability distributions using compact analytical expressions is infeasible. Approximation methods are required to express the a priori knowledge about a random variable in form of prior distributions. Further approximations are needed to compute posterior distributions of the random variables using the observations. When the computational complexity of representation of such posteriors increases over time as in mixture models, approximations are required to reduce the complexity of such representations.

    This thesis further extends existing approximation methods for Bayesian inference, and generalizes the existing approximation methods in three aspects namely; prior selection, posterior evaluation given the observations and maintenance of computation complexity.

    Particularly, the maximum entropy properties of the first-order stable spline kernel for identification of linear time-invariant stable and causal systems are shown. Analytical approximations are used to express the prior knowledge about the properties of the impulse response of a linear time-invariant stable and causal system.

    Variational Bayes (VB) method is used to compute an approximate posterior in two inference problems. In the first problem, an approximate posterior for the state smoothing problem for linear statespace models with unknown and time-varying noise covariances is proposed. In the second problem, the VB method is used for approximate inference in state-space models with skewed measurement noise.

    Moreover, a novel approximation method for Bayesian inference is proposed. The proposed Bayesian inference technique is based on Taylor series approximation of the logarithm of the likelihood function. The proposed approximation is devised for the case where the prior distribution belongs to the exponential family of distributions.

    Finally, two contributions are dedicated to the mixture reduction (MR) problem. The first contribution, generalize the existing MR algorithms for Gaussian mixtures to the exponential family of distributions and compares them in an extended target tracking scenario. The second contribution, proposes a new Gaussian mixture reduction algorithm which minimizes the reverse Kullback-Leibler divergence and has specific peak preserving properties.

    List of papers
    1. Maximum entropy properties of discrete-time first-order stable spline kernel
    Open this publication in new window or tab >>Maximum entropy properties of discrete-time first-order stable spline kernel
    Show others...
    2016 (English)In: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 66, p. 34-38Article in journal (Refereed) Published
    Abstract [en]

    The first order stable spline (SS-1) kernel (also known as the tunedcorrelated kernel) is used extensively in regularized system identification, where the impulse response is modeled as a zero-mean Gaussian process whose covariance function is given by well designed and tuned kernels. In this paper, we discuss the maximum entropy properties of this kernel. In particular, we formulate the exact maximum entropy problem solved by the SS-1 kernel without Gaussian and uniform sampling assumptions. Under general sampling assumption, we also derive the special structure of the SS-1 kernel (e.g. its tridiagonal inverse and factorization have closed form expression), also giving to it a maximum entropy covariance completion interpretation.

    Keywords
    System identification;Regularization method;Kernel structure;Maximum entropy
    National Category
    Signal Processing
    Identifiers
    urn:nbn:se:liu:diva-121618 (URN)10.1016/j.automatica.2015.12.009 (DOI)
    Available from: 2015-09-28 Created: 2015-09-28 Last updated: 2017-12-01Bibliographically approved
    2. Approximate Bayesian Smoothing with Unknown Process and Measurement Noise Covariances
    Open this publication in new window or tab >>Approximate Bayesian Smoothing with Unknown Process and Measurement Noise Covariances
    2015 (English)In: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 22, no 12, p. 2450-2454Article in journal (Refereed) Published
    Abstract [en]

    We present an adaptive smoother for linear state-space models with unknown process and measurement noise covariances. The proposed method utilizes the variational Bayes technique to perform approximate inference. The resulting smoother is computationally efficient, easy to implement, and can be applied to high dimensional linear systems. The performance of the algorithm is illustrated on a target tracking example.

    Place, publisher, year, edition, pages
    Institute of Electrical and Electronics Engineers (IEEE), 2015
    Keywords
    Adaptive smoothing, Kalman filtering, noise covariance, Rauch-Tung-Striebel smoother, sensor calibration, time-varying noiseco variances, variational Bayes
    National Category
    Signal Processing
    Identifiers
    urn:nbn:se:liu:diva-121617 (URN)10.1109/LSP.2015.2490543 (DOI)000364207300007 ()
    Note

    At the time for thesis presentation publication was in status: Manuscript

    Available from: 2015-09-28 Created: 2015-09-28 Last updated: 2018-03-09Bibliographically approved
    3. Robust Inference for State-Space Models with Skewed Measurement Noise
    Open this publication in new window or tab >>Robust Inference for State-Space Models with Skewed Measurement Noise
    2015 (English)In: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 22, no 11, p. 1898-1902Article in journal (Refereed) Published
    Abstract [en]

    Filtering and smoothing algorithms for linear discrete-time state-space models with skewed and heavy-tailed measurement noise are presented. The algorithms use a variational Bayes approximation of the posterior distribution of models that have normal prior and skew-t-distributed measurement noise. The proposed filter and smoother are compared with conventional low-complexity alternatives in a simulated pseudorange positioning scenario. In the simulations the proposed methods achieve better accuracy than the alternative methods, the computational complexity of the filter being roughly 5 to 10 times that of the Kalman filter.

    Place, publisher, year, edition, pages
    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2015
    Keywords
    Kalman filter; robust filtering; RTS smoother; skew t; skewness; t-distribution; variational Bayes
    National Category
    Electrical Engineering, Electronic Engineering, Information Engineering
    Identifiers
    urn:nbn:se:liu:diva-120129 (URN)10.1109/LSP.2015.2437456 (DOI)000356458700003 ()
    Note

    Funding Agencies|Tampere University of Technology Graduate School; Finnish Doctoral Programme in Computational Sciences (FICS); Foundation of Nokia Corporation; Swedish research council (VR), project ETT [621-2010-4301]

    Available from: 2015-07-14 Created: 2015-07-13 Last updated: 2017-12-04
    4. Bayesian Inference via Approximation of Log-likelihood for Priors in Exponential Family
    Open this publication in new window or tab >>Bayesian Inference via Approximation of Log-likelihood for Priors in Exponential Family
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    In this paper, a Bayesian inference technique based on Taylor series approximation of the logarithm of the likelihood function is presented. The proposed approximation is devised for the case where the prior distribution belongs to the exponential family of distributions. The logarithm of the likelihood function is linearized with respect to the sufficient statistic of the prior distribution in exponential family such that the posterior obtains the same exponential family form as the prior. Similarities between the proposed method and the extended Kalman filter for nonlinear filtering are illustrated. Further, an extended target measurement update for target models where the target extent is represented by a random matrix having an inverse Wishart distribution is derived. The approximate update covers the important case where the spread of measurement is due to the target extent as well as the measurement noise in the sensor.

    National Category
    Signal Processing
    Identifiers
    urn:nbn:se:liu:diva-121616 (URN)
    Available from: 2015-09-28 Created: 2015-09-28 Last updated: 2015-10-05Bibliographically approved
    5. Greedy Reduction Algorithms for Mixtures of Exponential Family
    Open this publication in new window or tab >>Greedy Reduction Algorithms for Mixtures of Exponential Family
    2015 (English)In: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 22, no 6, p. 676-680Article in journal (Refereed) Published
    Abstract [en]

    In this letter, we propose a general framework for greedy reduction of mixture densities of exponential family. The performances of the generalized algorithms are illustrated both on an artificial example where randomly generated mixture densities are reduced and on a target tracking scenario where the reduction is carried out in the recursion of a Gaussian inverse Wishart probability hypothesis density (PHD) filter.

    Place, publisher, year, edition, pages
    Institute of Electrical and Electronics Engineers (IEEE), 2015
    Keywords
    Exponential family; extended target; integral square error; Kullback-Leibler divergence; mixture density; mixture reduction; target tracking
    National Category
    Electrical Engineering, Electronic Engineering, Information Engineering
    Identifiers
    urn:nbn:se:liu:diva-112990 (URN)10.1109/LSP.2014.2367154 (DOI)000345236400005 ()
    Note

    Funding Agencies|Swedish research council (VR) under ETT [621-2010-4301]; SSF, project CUAS

    Available from: 2015-01-12 Created: 2015-01-08 Last updated: 2017-12-05
    6. Gaussian Mixture Reduction Using Reverse Kullback-Leibler Divergence
    Open this publication in new window or tab >>Gaussian Mixture Reduction Using Reverse Kullback-Leibler Divergence
    (English)Manuscript (preprint) (Other academic)
    National Category
    Signal Processing
    Identifiers
    urn:nbn:se:liu:diva-121615 (URN)
    Available from: 2015-09-28 Created: 2015-09-28 Last updated: 2015-10-05
  • 31.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Nurminen, Henri
    Department of Automation Science and Engineering, Tampere University of Technology, Finland.
    Pichè, Robert
    Department of Automation Science and Engineering, Tampere University of Technology, Finland.
    Gustafsson, Fredrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Variational Iterations for Filtering and Smoothing with skew-t measurement noise2015Report (Other academic)
    Abstract [en]

    In this technical report, some derivations for the filter and smoother proposed in [1] are presented. More specifically, the derivations for the cyclic iteration needed to solve the variational Bayes filter and smoother for state space models with skew t likelihood proposed in [1] are presented.

  • 32.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Orguner, Umut
    Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.
    Gustafsson, Fredrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Bayesian Inference via Approximation of Log-likelihood for Priors in Exponential FamilyManuscript (preprint) (Other academic)
    Abstract [en]

    In this paper, a Bayesian inference technique based on Taylor series approximation of the logarithm of the likelihood function is presented. The proposed approximation is devised for the case where the prior distribution belongs to the exponential family of distributions. The logarithm of the likelihood function is linearized with respect to the sufficient statistic of the prior distribution in exponential family such that the posterior obtains the same exponential family form as the prior. Similarities between the proposed method and the extended Kalman filter for nonlinear filtering are illustrated. Further, an extended target measurement update for target models where the target extent is represented by a random matrix having an inverse Wishart distribution is derived. The approximate update covers the important case where the spread of measurement is due to the target extent as well as the measurement noise in the sensor.

  • 33.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Orguner, Umut
    Middle East Technical University.
    Lundquist, Christian
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Schön, Thomas
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    On mixture reduction for multiple target tracking2012Conference paper (Refereed)
  • 34.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control.
    Orguner, Umut
    Özkan, Emre
    Linköping University, Department of Electrical Engineering, Automatic Control.
    Gaussian Mixture Reduction Using Reverse Kullback-Leibler DivergenceManuscript (preprint) (Other academic)
  • 35.
    Ardeshiri, Tohid
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Automatic Control.
    Özkan, Emre
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    An adaptive PHD filter for tracking with unknown sensor characteristics2013Conference paper (Refereed)
    Abstract [en]

    In multi-target tracking, the discrepancy between the nominal and the true values of the model parameters might result in poor performance. In this paper, an adaptive Probability Hypothesis Density (PHD) filter is proposed which accounts for sensor parameter uncertainty. Variational Bayes technique is used for approximate inference which provides analytic expressions for the PHD recursions analogous to the Gaussian mixture implementation of the PHD filter. The proposed method is evaluated in a multi-target tracking scenario. The improvement in the performance is shown in simulations.

  • 36.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Özkan, Emre
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Orguner, Umut
    Middle East Technical University.
    On Reduction of Mixtures of the Exponential Family Distributions2013Report (Other academic)
    Abstract [en]

    Many estimation problems require a mixture reduction algorithm with which an increasing number of mixture components are reduced to a tractable level. In this technical report a discussion on dierent aspects of mixture reduction is given followed by a presentation of numerical simulation on reduction of mixture densities where the component density belongs to the exponential family of distributions.

  • 37.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Özkan, Emre
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Orguner, Umut
    Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.
    Gustafsson, Fredrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Approximate Bayesian Smoothing with Unknown Process and Measurement Noise Covariances2015In: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 22, no 12, p. 2450-2454Article in journal (Refereed)
    Abstract [en]

    We present an adaptive smoother for linear state-space models with unknown process and measurement noise covariances. The proposed method utilizes the variational Bayes technique to perform approximate inference. The resulting smoother is computationally efficient, easy to implement, and can be applied to high dimensional linear systems. The performance of the algorithm is illustrated on a target tracking example.

  • 38.
    Ardeshiri, Tohid
    et al.
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Özkan, Emre
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Orguner, Umut
    Linköping University, Department of Electrical Engineering. Linköping University, Faculty of Science & Engineering.
    Gustafsson, Fredrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
    Variational Iterations for Smoothing with Unknown Process and Measurement Noise Covariances2015Report (Other academic)
    Abstract [en]

    In this technical report, some derivations for the smoother proposed in [1] are presented. More specifically, the derivations for the cyclic iteration needed to solve the variational Bayes smoother for linear state-space models with unknownprocess and measurement noise covariances in [1] are presented. Further, the variational iterations are compared with iterations of the Expectation Maximization (EM) algorithm for smoothing linear state-space models with unknown noise covariances.

    [1] T. Ardeshiri, E. Özkan, U. Orguner, and F. Gustafsson, ApproximateBayesian smoothing with unknown process and measurement noise covariances, submitted to Signal Processing Letters, 2015.

  • 39.
    Arshad, Sana
    et al.
    NED University of Engn and Technology, Pakistan.
    Ramzan, Rashad
    United Arab Emirates University, U Arab Emirates.
    Wahab, Qamar-ul
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    50-830 MHz noise and distortion canceling CMOS low noise amplifier2018In: Integration, ISSN 0167-9260, E-ISSN 1872-7522, Vol. 60, p. 63-73Article in journal (Refereed)
    Abstract [en]

    In this paper, a modified resistive shunt feedback topology is proposed that performs noise cancelation and serves as an opposite polarity non-linearity generator to cancel the distortion produced by the main stage. The proposed topology has a bandwidth similar to a resistive shunt feedback LNA, but with a superior noise figure (NF) and linearity. The proposed wideband LNA is fabricated in 130 nm CMOS technology and occupies an area of 0.5 mm(2). Measured results depict 3-dB bandwidth from 50 to 830 MHz. The measured gain and NF at 420 MHz are 17 dB and 2.2 dB, respectively. The high value of the 1/f noise is one of the key problems in low frequency CMOS designs. The proposed topology also addresses this challenge and a low NF is attained at low frequencies. Measured 811 and S22 are better than -8.9 dB and -8.5 dB, respectively within the 0.05-1 GHz band. The 1-dB compression point is -11.5 dBm at 700 MHz, while the IIP3 is -6.3 dBm. The forward core consumes 14 mW from a 1.8 V supply. This LNA is suitable for VHF and UHF SDR communication receivers.

  • 40.
    Ashrafi, Ashkan
    et al.
    San Diego State University.
    Strollo, Antonio G. M.
    University of Napoli Federico II.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Computer Engineering. Linköping University, The Institute of Technology.
    Hardware implementation of digital signal processing algorithms2013In: Journal of Electrical and Computer Engineering, ISSN 2090-0147, E-ISSN 2090-0155, Vol. 2013, no 782575, p. 1-2Article in journal (Other academic)
  • 41.
    Athalye, Akshay
    et al.
    Stony Brook University, USA.
    Savic, Vladimir
    Technical University of Madrid, Spain.
    Bolic, Miodrag
    University of Ottawa, Canada.
    Djuric, Petar M.
    Stony Brook University, USA.
    A Radio Frequency Identification System for accurate indoor localization2011In: Proc. of IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2011, p. 1777-1780Conference paper (Refereed)
    Abstract [en]

    In this paper we present a novel Radio Frequency Identification (RFID) system for accurate indoor localization. The system is composed of a standard Ultra High Frequency (UHF), ISO-18006C compliant RFID reader, a large set of standard passive RFID tags whose locations are known, and a newly developed tag-like RFID component that is attached to the items that need to be localized. The new semi-passive component, referred to as sensatag (sense-a-tag), has a dual functionality wherein it can sense the communication between the reader and standard tags which are in its proximity, and also communicate with the reader like standard tags using backscatter modulation. Based on the information conveyed by the sensatags to the reader, localization algorithms based on binary sensor principles can be developed. We present results from real measurements that show the accuracy of the proposed system.

  • 42.
    Athalye, Akshay
    et al.
    Stony Brook University, USA.
    Savic, Vladimir
    Signal Processing Application Group, Universidad Politecnica de Madrid, Madrid, Spain.
    Bolic, Miodrag
    University of Ottawa, Canada.
    Djuric, Petar M.
    Stony Brook University, USA.
    Novel Semi-Passive RFID System for Indoor Localization2013In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 13, no 2, p. 528-537Article in journal (Refereed)
    Abstract [en]

    In this paper, we present a novel semi-passive radio-frequency identification (RFID) system for accurate indoor localization. The system is composed of a standard ultra high frequency (UHF) ISO-18000-6C compliant RFID reader, a set of standard passive RFID tags whose locations are known, and a newly developed tag-like RFID component, which is attached to the items that need to be localized. The new semi-passive component, referred to as sensatag (sense-a-tag), has a dual functionality: it can sense and decode communication between the reader and standard tags in its proximity, and can communicate with the reader like standard tags using backscatter modulation. Based on the information conveyed by the sensatags to the reader, localization algorithms based on binary sensor principles can be developed. We conduct a number of experiments in a laboratory to quantify the performance of our system, including two real applications, one finding the exact placement of items on shelves, and the other estimating the direction of item movement.

  • 43.
    Athar, Saima
    et al.
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Gustafsson, Oscar
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Qureshi, Fahad
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Kale, Izzet
    University of Westminster, London, United Kingdom.
    On the efficient computation of single-bit input word length pipelined FFTs2011In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 8, no 17, p. 1437-1443Article in journal (Refereed)
    Abstract [en]

    This letter describes an efficient architecture for the computation of fast Fourier transform (FFT) algorithms with single-bit input. The proposed architecture is aimed for the first stages of pipelined FFT architectures, processing one sample per clock cycle, hence making it suiable for real-time FFT computation. Since natural input order pipeline FFTs use large memories in the early stages, it is important to keep the word length shorter in the beginning of the pipeline. By replacing the initial butterflies and rotators of an architecture with that of the proposed block, the memory requirements can be significantly reduced. Comparisons with the commonly used single delay feedback (SDF) architecture show that more than 50% of the required memory can be saved in some cases.

  • 44.
    Avazkonandeh Gharavol, Ebrahim
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Robust Joint Optimization of MIMO Interfering Relay Channels with Imperfect CSI2011In: 2001 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Piscataway, NJ, USA: IEEE , 2011, , p. 5p. 209-212Conference paper (Refereed)
    Abstract [en]

    In this paper we deal with the problem of the joint optimization of the precoders, equalizers and relay beamformer of a multiple-input multiple-output interfering relay channel. This network can be regarded az a generalized model for both one-way and two-way relay channels with/without direct interfering links. Unlike the conventional design procedures, we assume that the Channel State Information (CSI) is not known perfectly. The imperfect CSI is described using the norm bounded error framework. We use a system-wide Sum Mean Square Error (SMSE) based problem formulation which is constrained using the transmit power of the terminals and the relay node. The problem at hand, from a worst-case design perspective, is a multilinear, and hence, a nonconvex problem which is also semiinfinite in its constraints. We use a generalized version of the Peterson’s lemma to handle the semi-infiniteness and reduce the original problem to a single Linear Matrix Inequality (LMI). However, this LMI is not convex, and to resolve this issue we propose an iterative algorithm based on the alternating convex search methodology to solve the aforementioned problem. Finally simulation results, i.e., the convergence of the proposed algorithm and the SMSE properties, are included to asses the performance of the proposed algorithm.

  • 45.
    Avazkonandeh Gharavol, Ebrahim
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Robust Joint Optimization of Non-regenerative MIMO Relay Channels with Imperfect CSI2011In: Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011, IEEE Computer Society, 2011, p. 1589-1593Conference paper (Refereed)
    Abstract [en]

    In this paper, we deal with the problem of joint optimization of the source precoder, the relay beamformer and the destination equalizer in a nonregenerative relay network with only a partial knowledge of the Channel State Information (CSI).

    We model the partial CSI using a deterministic norm bounded error model, and we use a system-wide mean square error performance measure which is constrained based on the transmit power regulations for both source and relay nodes.

    Most conventional designs employ the average performance optimization, however, we solve this problem from a worst-case design perspective.

    The original problem formulation is a semi-infinite trilinear optimization problem which is not convex.

    To solve this problem we extend the existing theories to deal with the constraints which are semi-infinite in different independent complex matrix variables.

    We show that the equivalent approximate problem is a set of linear matrix inequalities, that can be solved iteratively.

    Finally simulation results assess the performance of the proposed scheme.

  • 46.
    Avazkonandeh Gharavol, Ebrahim
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    The Sign-Definiteness Lemma and Its Applications to Robust Transceiver Optimization for Multiuser MIMO Systems2013In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 61, no 2, p. 238-252Article in journal (Refereed)
    Abstract [en]

    We formally generalize the sign-definiteness lemma to the case of complex-valued matrices and multiple norm-bounded uncertainties. This lemma has found many applications in the study of the stability of control systems, and in the design and optimization of robust transceivers in communications. We then present three different novel applications of this lemma in the area of multi-user multiple-input multiple-output (MIMO) robust transceiver optimization. Specifically, the scenarios of interest are: (i) robust linear beamforming in an interfering adhoc network, (ii) robust design of a general relay network, including the two-way relay channel as a special case, and (iii) a half-duplex one-way relay system with multiple relays. For these networks, we formulate the design problems of minimizing the (sum) MSE of the symbol detection subject to different average power budget constraints. We show that these design problems are non-convex (with bilinear or trilinear constraints) and semiinfinite in multiple independent uncertainty matrix-valued variables. We propose a two-stage solution where in the first step the semi-infinite constraints are converted to linear matrix inequalities using the generalized signdefiniteness lemma, and in the second step, we use an iterative algorithm based on alternating convex search (ACS). Via simulations we evaluate the performance of the proposed scheme.

  • 47.
    Axell, Erik
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Multiantenna Spectrum Sensing of a Second-Order Cyclostationary Signal2011In: Proceedings of the 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP'11), 2011, p. 329-332Conference paper (Refereed)
    Abstract [en]

    We consider spectrum sensing of a second-order cyclostationary signal receivedat multiple antennas. The proposed detector exploits both the spatial andthe temporal correlation of the received signal, from knowledge of thefundamental period of the cyclostationary signal and the eigenvaluemultiplicities of the temporal covariance matrix. All other parameters, suchas the channel gains or the noise power, are assumed to be unknown. The proposeddetector is shown numerically to outperform state-of-the-art detectors forspectrum sensing of anOFDM signal, both when using a single antenna and with multiple antennas.

  • 48.
    Axell, Erik
    et al.
    Dept. of Robust Telecommunications, Swedish Defence Research Agency, Sweden .
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Persson, Daniel
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    GNSS spoofing detection using multiple mobile COTS receivers2015In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2015, p. 3192-3196Conference paper (Refereed)
    Abstract [en]

    In this paper we deal with spoofing detection in GNSS receivers. We derive the optimal genie detector when the true positions are perfectly known, and the observation errors are Gaussian, as a benchmark for other detectors. The system model considers three dimensional positions, and includes correlated errors. In addition, we propose several detectors that do not need any position knowledge, that outperform recently proposed detectors in many interesting cases.

  • 49.
    Axelsson, Anders
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, The Institute of Technology.
    Automatisk bullerdosreglering i hörselskydd2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In noisy workplaces the staff are often using hearing protectors with built-in speakers for entertainment purposes. Prolonged exposure to loud sound levels can cause damage to the user’s ears. The legislation requires therefore a limiting mechanism for the speakers.

    The noise level is defined as the average of the sound levels the user has been exposed to during a working day. If the noise threshold is reached the user has to rest his ears. This definition can be exploited to allow the user to listen to a loud sound level for a limited time and then lowering it. If the sound level is lowered slowly, it is possible to preserve both safety and listening experience.

    This work describes how an algorithm can be designed for a digital signal processor with the purpose of controlling the sound level. The aim was to protect the user's hearing without spoiling the listening experience, and without consuming more power than necessary.

    The algorithm design included a predictor that predicts the amount of noise the user risk being subjected to, if he continues to listen at the same level. Slow reduction of the sound level can then be carried out in time before the noise threshold is reached.

    It turned out that the algorithm only needed a few samples per second to estimate and control the sound level sufficiently precisely, this reduced the power consumption. The results show that it is possible to combine the objectives for safety, listening experience and power consumption in hearing protectors.

    The algorithm was not implemented in a real system. The algorithm had only access to the audio signal which the user intended to listen to for entertainment purposes.

  • 50.
    Baravdish, George
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Evangelista, Gianpaolo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Svensson, Olof
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Sofya, Faten
    Mosul University, Mosul, Iraq.
    PDE-SVD Based Audio Denoising2012In: Proceedings of the 5th International Symposium on Communications Control and Signal Processing (ISCCSP), 2012, Piscataway, NJ, USA: IEEE , 2012, p. 1-6Conference paper (Refereed)
    Abstract [en]

    In this paper we present a new method for denoising audio signals. The method is based on the Singular Value Decomposition (SVD) of the frame matrix representing the signal inthe Overlap Add decomposition. Denoising is performed by modifying both the singular values, using a tapering model, and the singular vectors of the representation, using a nonlinear PDE method. The performance of the method is evaluated and compared with denoising obtained by filtering.

1234567 1 - 50 of 596
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf