liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbas, Malik Waseem
    et al.
    Natl Inst Biotechnol and Genet Engn, Pakistan.
    Soomro, Razium Ali
    Natl Inst Biotechnol and Genet Engn, Pakistan; Univ Sindh, Pakistan; Univ Bristol, England.
    Kalwar, Nazar Hussain
    Shah Abdul Latif Univ, Pakistan.
    Zahoor, Mehvish
    Natl Inst Biotechnol and Genet Engn, Pakistan.
    Avci, Ahmet
    Selcuk Univ, Turkey.
    Pehlivan, Erol
    Selcuk Univ, Turkey.
    Hallam, Keith Richard
    Univ Bristol, England.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid2019In: Microchemical journal (Print), ISSN 0026-265X, E-ISSN 1095-9149, Vol. 146, p. 517-524Article in journal (Refereed)
    Abstract [en]

    The study explores carbon quantum dots (C-dots) as potential candidates for enhancing the signal sensitivity of an electrochemical sensor devised for biologically important molecule, such as uric acid (UA). The C-dots were evaluated for their electrochemical characteristics in combination with Fe3O4 nanoparticles (Fe3O4 NPs), which were applied as the primary electro-catalytic promoter. The hybrid nanocomposite (C-dots/Fe3O4 HCs) formation was achieved by facilitating the adsorption of C-dots over Fe3O4 NPs using amine-carbonyl interactions. Unlike, one pot method, the proposed strategy enables aggregation-free coverage of Fe3O4 NPs with highly conductive layer of C-dots that can act as conduction centres to support ultra-fast electron transfer kinetics to satisfy the need of high signal sensitivity. The hybrid composite demonstrated remarkable signal improvement when tested against the electrochemical oxidation of UA. The heighten current response and lower over-potential values enabled development of a DC-amperometric (DC-AMP) sensor for UA with a linear working range of 0.01 to 0.145 mu M and signal sensitivity measurable up to 6.0 x 10(-9) M. The said improvement was manifested as a synergetic outcome of active redox couple (Fe (III/II)), larger surface area of Fe3O4 NPs engulfed with a layer of highly conductive C-dots acting as efficient charge sensitisers.

  • 2.
    Aziz, Shazed
    et al.
    University Putra Malaysia, UPM Serdang, Selangor, Malaysia.
    Rashid, Suraya Abdul
    University Putra Malaysia, UPM Serdang, Selangor, Malaysia.
    Rahmanian, Saeed
    University Putra Malaysia, UPM Serdang, Selangor, Malaysia.
    Salleh, Mohamad Amran
    University Putra Malaysia, UPM Serdang, Selangor, Malaysia.
    Experimental evaluation of the interfacial properties of carbon nanotube coated carbon fiber reinforced hybrid composites2015In: Polymer Composites, ISSN 0272-8397, E-ISSN 1548-0569, Vol. 36, no 10, p. 1941-1950Article in journal (Refereed)
    Abstract [en]

    A floating catalyst chemical vapor deposition (CVD) unit was utilized to grow CNT onto the surface of carbon fiber (CF). The surface morphology of the resultant fibers, CNT population density and alignment pattern were found to be depended on the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. In contrast to the neat‐CF reinforced composites, improved interfacial shear strength (IFSS) between CF and matrix were obtained when the surface of CF was coated by CNT. Particularly, CF treatment condition for CNT‐coating with 700°C reaction temperature and 30 min reaction time has shown a considerable increase in IFSS approximately of 45% over that of the untreated fiber from which it was processed. The proper justification of fiber–matrix adhesion featured by composite interfacial properties was explained through IFSS.

  • 3.
    Crispin, Xavier
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Marciniak, S.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Osikowicz, Wojciech
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Zotti, G.
    Instituto Consiglio Nazionale delle Ricerche per l' Energetica e le Interfasi, Padova, Italy.
    Denier Van Der Gon, A. W.
    Faculty of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
    Louwet, F.
    Chemistry Department, R&D Materials Research, Agfa Gevaert N.V., Mortsel, Belgium.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Groenendaal, L.
    Chemistry Department, R&D Materials Research, Agfa Gevaert N.V., Mortsel, Belgium.
    De Schryver, F.
    Afdeling Fotochemie en Spectroscopie, Katholieke Universiteit Leuven, Heverlee, Belgium.
    Salaneck, William R.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Conductivity, Morphology, Interfacial Chemistry, and Stability of Poly(3,4- ethylene dioxythiophene)–Poly(styrene sulfonate): A Photoelectron Spectroscopy Study2003In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 41, no 21, p. 2561-2583Article, review/survey (Refereed)
    Abstract [en]

    X-ray photoelectron spectroscopy (XPS) has been used to characterize poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDT/PSS), one of the most common electrically conducting organic polymers. A correlation has been established between the composition, morphology, and polymerization mechanism, on the one hand, and the electric conductivity of PEDT/PSS, on the other hand. XPS has been used to identify interfacial reactions occurring at the polymer-on-ITO and polymer-on-glass interfaces, as well as chemical changes within the polymer blend induced by electrical stress and exposure to ultraviolet light.

  • 4.
    Ekman, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics.
    Development and Evaluation of Textile Actuators2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Existing actuators in robotics are noisy, rigid and not very lifelike in their movements. There is a need for actuators in especially limb prosthetics and exoskeletons that are silent, softly moving and preferably operating on low currents. One such solution is the conducting polymers.

    Textiles are well researched and there is a wide variety of patterning. Even more important is their reproducibility and how easily they are mass-produced.

    This thesis work combines conducting polymers with textiles to achieve linear textile actuators. The textiles are coated with the conducting polymer Polypyrrole which has the property of volume change, when a voltage is applied and there is a reservoir of ions accessible. The volume change, expansion and contraction, results in a linear actuation. The force and strain are measured while changing different parameters and the results are evaluated in this thesis.

  • 5.
    Erdtman, Edvin
    et al.
    Akademin för textil, teknik och ekonomi, Högskolan i Borås, Borås, Sverige.
    Bohlén, Martin
    Akademin för textil, teknik och ekonomi, Högskolan i Borås, Borås, Sverige.
    Ahlström, Peter
    Akademin för textil, teknik och ekonomi, Högskolan i Borås, Borås, Sverige.
    Gkourmpis, Thomas
    Innovation & Technology, Borealis AB, Stenungsund, Sweden.
    Berlin, Mikael
    Tetra Pak Packaging Solutions AB, Ruben Rausings Gata, Lund, Sweden.
    Andersson, Thorbjörn
    Tetra Pak Packaging Solutions AB, Ruben Rausings Gata, Lund, Sweden.
    Bolton, Kim
    Akademin för textil, teknik och ekonomi, Högskolan i Borås, Borås, Sverige.
    A molecular-level computational study of the diffusion and solubility of water and oxygen in carbonaceous polyethylene nanocomposites2016In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 54, no 5, p. 589-602Article in journal (Refereed)
    Abstract [en]

    Monte Carlo and molecular dynamics simulations were performed to investigate the effect on the solubility, diffusion, and permeability of water and oxygen when adding graphene or single-walled carbon nanotubes (SWCNTs) to polyethylene (PE). When compared with pure PE, addition of graphene lowered the solubility of water, whereas at lower temperatures, the oxygen solubility increased because of the oxygen–graphene interaction. Addition of SWCNTs lowered the solubility of both water and oxygen when compared with pure PE. A detailed analysis showed that an ordered structure of PE is induced near the additive surface, which leads to a decrease in the diffusion coefficient of both penetrants in this region. The addition of graphene does not change the permeation coefficient of oxygen (in the direction parallel to the filler) and, in fact, may even increase this coefficient when compared with pure PE. In contrast, the water permeability is decreased when graphene is added to PE. The addition of SWCNTs decreases the permeability of both penetrants. Graphene can consequently be added to selectively increase the solubility and permeation of oxygen over water, at least at lower temperatures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 589–602

  • 6.
    Feng, Shizhen
    et al.
    South China University of Technology, Peoples R China.
    Liu, Chang
    South China University of Technology, Peoples R China.
    Xu, Xiaofeng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Chalmers University of Technology, Sweden.
    Liu, Xuncheng
    South China University of Technology, Peoples R China.
    Zhang, Lianjie
    South China University of Technology, Peoples R China.
    Nian, Yaowen
    South China University of Technology, Peoples R China.
    Cao, Yong
    South China University of Technology, Peoples R China.
    Chen, Junwu
    South China University of Technology, Peoples R China.
    Siloxane-Terminated Side Chain Engineering of Acceptor Polymers Leading to Over 7% Power Conversion Efficiencies in All-Polymer Solar Cells2017In: ACS Macro Letters, E-ISSN 2161-1653, Vol. 6, no 11, p. 1310-1314Article in journal (Refereed)
    Abstract [en]

    To investigate the influence of functional pendent groups on acceptor polymers and photovoltaic properties of all-polymer solar cells (all-PSCs), two novel acceptor polymers containing siloxane-terminated side chains are synthesized and characterized. Increasing the content of siloxane-terminated side chains can reduce pi-pi stacking distance and improve crystalline behavior, yet lead to poorer solubility of the acceptor polymers. By modulating the proper loadings of siloxane-terminated side chains on the acceptor polymers, the PBDB-T:PNDI-Si25 all-PSC attains a maximal power conversion efficiency (PCE) of 7.4% with an outstanding fill factor of 0.68. The results provide, new insights for developing high-performance all-PSCs through functional group engineering on the acceptor polymers, to achieve good solubility, polymer miscibility, and blend morphology.

  • 7.
    Gabrielsson, Erik O.
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Armgarth, Astrid
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Nilsson, K. Peter N.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Controlled Microscopic Formation of Amyloid-Like Aβ Aggregates Using an Organic Electronic DeviceManuscript (preprint) (Other academic)
    Abstract [en]

    Alzheimer’s disease (AD), primarily associated with formation of fibrillar amyloid-beta peptide (Aβ) aggregates in the brain, is one of the most common old-age diseases. It is therefore crucial with an elevated scientific interest in Aβ, and its fundamental properties in a wide sense, to develop efficient methods for early detection and to combat AD. For the development of new techniques, both for AD detection and prevention, researchers are dependent on either tissue samples from deceased patients, animal models or in vitro systems. In vitro systems, such as producing protein aggregates of the Aβ-peptide in a test tube by incubation under denaturing conditions, offers us a simple but rather blunt tool for evaluating aggregation inhibition caused by compounds or to investigate new detection methods. We recently introduced the organic electronic ion pump (OEIP) as a method for creating amyloid-like aggregates at high spatiotemporal control as compared to the resulting aggregates manufactured using regular test tube-conditions. Combined with a fluorescent probe that is specific for the fibrillar aggregated form of misfolded peptides commonly seen in AD, this allowed us to control and to monitor the aggregation of a model peptide system in a highly confined space.

    To further elaborate the functionality of the OEIP together with amyloid-specific probes, we here present experiments demonstrating electronically controlled micron sized formation of Aβ-aggregates with morphologies ranging from fine fibers, to bundles of fibers, and thick mesh-like fiber structures. We foresee that the methodology can be implemented in multi array systems that can be utilized for studies of protein aggregation in confined spaces or together with cultured cells, as well as for the development of screening platforms for assessment of molecules influencing the Aβ-aggregation process.

  • 8.
    Gabrielsson, Erik O.
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Janson, Per
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Simon, Daniel T.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    A Four-Diode Full-Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity2014In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, no 30, p. 5143-5147Article in journal (Refereed)
    Abstract [en]

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions.

  • 9.
    Golabi, Mohsen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Tuning the surface properties of polypyrrole films for modulating bacterial adhesion.2016In: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935, Vol. 217, no 10, p. 1128-1135Article in journal (Refereed)
    Abstract [en]

    Tuning the physical–chemical properties of polypyrrole (PPy) opens up potentially exciting new applications, especially in the area of bacterial adhesion. Polypyrrole is electrochemically synthesized under various conditions and the physical properties of the films and their effects on bacterial adhesion are characterized. Five types of dopants—chloride (Cl), perchlorate (ClO4), p-toluene-sulfonate (ToS), dodecylbenzene sulfonate (DBS), and poly sodium styrene sulfonate (PSS)—are used to fabricate PPy films at two different constant potentials (0.500 and 0.850 V) with and without Fe3+. Their thickness, roughness, and wettability are measured. The adhesion tendency of Escherichia coli, as a model bacterium, to the four polymers is studied. E. coli shows greater adhesion tendency to the hydrophobic, rough surface of PPy-DBS, and less adhesion tendency to the smooth and hydrophilic surface of PPy-PSS. The results facilitate the choice of appropriate electropolymerization conditions to modulate bacterial adhesion.

  • 10.
    Hynynen, Jonna
    et al.
    Chalmers Univ Technol, Sweden.
    Jarsvall, Emmy
    Chalmers Univ Technol, Sweden.
    Kroon, Renee
    Chalmers Univ Technol, Sweden.
    Zhang, Yadong
    Georgia Inst Technol, GA 30332 USA; Georgia Inst Technol, GA 30332 USA.
    Barlow, Stephen
    Georgia Inst Technol, GA 30332 USA; Georgia Inst Technol, GA 30332 USA.
    Marder, Seth R.
    Georgia Inst Technol, GA 30332 USA; Georgia Inst Technol, GA 30332 USA.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Lund, Anja
    Chalmers Univ Technol, Sweden.
    Mueller, Christian
    Chalmers Univ Technol, Sweden.
    Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene)2019In: ACS Macro Letters, E-ISSN 2161-1653, Vol. 8, no 1, p. 70-76Article in journal (Refereed)
    Abstract [en]

    The thermoelectric power factor of a broad range of organic semiconductors scales with their electrical conductivity according to a widely obeyed power law, and therefore, strategies that permit this empirical trend to be surpassed are highly sought after. Here, tensile drawing of the conjugated polymer poly(3-hexylthiophene) (P3HT) is employed to create free-standing films with a high degree of uniaxial alignment. Along the direction of orientation, sequential doping with a molybdenum tris(dithiolene) complex leads to a 5-fold enhancement of the power factor beyond the predicted value, reaching up to 16 mu W m(-1) K-2 for a conductivity of about 13 S cm(-1). Neither stretching nor doping affect the glass transition temperature of P3HT, giving rise to robust free-standing materials that are of interest for the design of flexible thermoelectric devices.

    The full text will be freely available from 2019-12-26 10:21
  • 11.
    Jin, Jing
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering. Chinese Acad Sci, Peoples R China.
    Ma, Jiao
    Taiyuan Univ Technol, Peoples R China.
    Song, Lingjie
    Chinese Acad Sci, Peoples R China.
    Jiang, Wei
    Chinese Acad Sci, Peoples R China.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Fabrication of a polypropylene immunoassay platform by photografting reaction2019In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 102, p. 492-501Article in journal (Refereed)
    Abstract [en]

    The technology of an immunoassay detection platform is critical to clinical disease diagnoses, especially for developing a medical diagnostic system. A polymer-based immunoassay platform was fabricated on nonwoven fabric polypropylene (PP) using a photografting reaction to graft 2-hydroxyethyl methacrylate (HEMA) and sulfobetaine (SBMA). The antifouling properties of PP-g-P(HEMA-co-SBMA) were investigated by fibrinogen adsorption and platelet adhesion. Carbonyldiimidazole was employed to activate the pendant hydroxyl groups in HEMA moieties and covalently coupled antibody molecules. The detection of the limit of the immunoassay platform was as low as 10 pg/mL. Antibody amount and bioactivity affected the availability of antibody and the sensitivity of immunoassay. The immune efficiency was dependent on the strategies of antibody immobilization. The immune efficiency of Au-g-P(SBMA-co-HEMA) and Au-SH surfaces measured by QCM-D was 165% and 35.7%, respectively. The covalently binding antibody via hydrophilic polymer chains as spacers could retain fragment antigen-binding up orientation, maintain the bioactivity of antibody, and mainly improve the accessibility of antibody molecules via adjusting the conformations of polymer chains when the antibodies recognized the antigens. Therefore, grafting hydrophilic polymers, such as zwitterionic PSBMA and reactive PHEMA onto nonwoven fabric PP, and binding antibody by covalent strategy had the potential to be developed as a commercial immunoassay platform.

  • 12.
    Martinez, Jose Gabriel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Richter, Klaus
    ITP GmbH Gesellschaft für Intelligente Produkte (ITP), Weimar, Germany.
    Persson, Nils-Krister
    Smart Textiles, Swedish School of Textiles (THS) , University of Borås, Borås, Sweden.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Investigation of electrically conducting yarns for use in textile actuators2018In: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, no 7, article id 074004Article in journal (Refereed)
    Abstract [en]

    Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 x INOX 50µm, polyester + 2 x Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.

  • 13.
    Tiwari, Ashutosh
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Mishra, Yogendra KumarFunctional Nanomaterials Group, Christian-Albrechts-Universität zu Kiel, Germany.Kobayashi, HisatoshiInternational Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan.Turner, AnthonyLinköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Intelligent nanomaterials2016Collection (editor) (Refereed)
    Abstract [en]

    Overall, this book presents a detailed and comprehensive overview of the state-of-the-art development of different nanoscale intelligent materials for advanced applications. Apart from fundamental aspects of fabrication and characterization of nanomaterials, it also covers key advanced principles involved in utilization of functionalities of these nanomaterials in appropriate forms. It is very important to develop and understand the cutting-edge principles of how to utilize nanoscale intelligent features in the desired fashion. These unique nanoscopic properties can either be accessed when the nanomaterials are prepared in the appropriate form, e.g., composites, or in integrated nanodevice form for direct use as electronic sensing devices. In both cases, the nanostructure has to be appropriately prepared, carefully handled, and properly integrated into the desired application in order to efficiently access its intelligent features. These aspects are reviewed in detail in three themed sections with relevant chapters: Nanomaterials, Fabrication and Biomedical Applications; Nanomaterials for Energy, Electronics, and Biosensing; Smart Nanocomposites, Fabrication, and Applications.

  • 14.
    Torop, Janno
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics.
    Aabloo, Alvo
    University of Tartu.
    Nanoporous Carbide-derived Carbon for Electroactuator Appliccations2013In: Eurofillers 2013 / [ed] Maria Omastova, 2013, p. 288-Conference paper (Other academic)
  • 15.
    Xia, Yuxin
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Polymer/polymer blends in organic photovoltaic and photodiode devices2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Organic photovoltaics devices (OPV) have attracted attentions of scientist for their potential as inexpensive, lightweight, flexible and suitable for roll-to-roll production. In recent years, considerable attention has been focused on new acceptor materials, either polymeric or small molecules, to replace the once dominating fullerene derivatives. The emergence of numerous new non-fullerene materials has driven power conversion efficiency (PCE) up to 17%, attracting more and more interests of commercialization.

    Polymer acceptors with more morphology stability, more absorption and more desired energy levels has been intensively studied and show great potential for large area and low-cost production in the future. OPV at this moment is not yet competitive with inorganic solar cells in PCE but is more attractive in flexibility, low weight and semitransparency. In this thesis, some basic knowledges of OPV is introduced in the first few chapters, while the next chapters are focusing on polymer-polymer blends and investigating novel structures and techniques for large scale production of solar cells and photodetectors aiming at maximizing these advantages to compete with inorganic counterpart.

    Thermal annealing effects on polymer-polymer solar cells based is studied. Annealed devices show doubled power conversion efficiency compared to non-annealed devices. Based on the morphology—mobility examination, we conclude that the better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help charge generation and meanwhile reduce recombination. The blend of an amorphous polymer and a semi-crystalline polymer can thus be modified by thermal annealing to double the power conversion efficiency.

    A novel concept of all-polymer organic photovoltaics device is demonstrated in this thesis where all the layers are made out of polymers. We use PEDOT:PSS as semitransparent anode and polyethyleneimine modified PEDOT:PSS as semitransparent cathode, both of which are slot-die printed on polyethylene terephthalate(PET). Active layers are deposited on cathode and anode surfaces by spin coating separately. These layers are then joined through a roll-to-roll compatible lamination process. This forms a semitransparent and flexible solar cell. By laminating a thin layer acceptor polymer to a thick polymer-polymer blend, we can further improve the performance by reducing traps comparing to laminating blend to blend.

    Flexible and semitransparent all-polymer photodiodes with different geometries can be fabricated through lamination. By choosing high band gap polymers and appropriate combination of two or more polymers, organic photodiode with low noise and high specific detectivity can be obtained. Comparison between bilayer and bulk heterojunction devices gives better understanding of the origin of noise and provides ways to improve the performance of photodiodes as detector.

    Noise level is a critical parameter for photodetectors. The difficulties of measuring the noise of photodetectors make some researchers prefer the estimated shot noise as the dominating one and ignore the thermal noise and 1/f noise. The latter two terms are sometimes several orders higher than the former, noting the importance of experimentally measuring noise.

    The use of semi-transparent photovoltaic devices causes an inevitable loss of photocurrent, as light transmitted has not been absorbed. This trivial effect also leads to a loss of photovoltage, an effect partially due to the lower photocurrent but also due to the geometry of the semitransparent photovoltaic device. We here demonstrate and evaluate this photovoltage loss in semi-transparent organic photovoltaic devices, compared with non-transparent solar cells of the same material. Semi-transparent solar cells in addition introduce photovoltage loss when formed by lamination. We document and analyze these effects for a number of polymer blends in the form of bulk heterojunctions.

    List of papers
    1. Inverted all-polymer solar cells based on a quinoxaline-thiophene/naphthalene-diimide polymer blend improved by annealing
    Open this publication in new window or tab >>Inverted all-polymer solar cells based on a quinoxaline-thiophene/naphthalene-diimide polymer blend improved by annealing
    Show others...
    2016 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 10, p. 3835-3843Article in journal (Refereed) Published
    Abstract [en]

    We have investigated the effect of thermal annealing on the photovoltaic parameters of all-polymer solar cells based on a quinoxaline-thiophene donor polymer (TQ1) and a naphthalene diimide acceptor polymer (N2200). The annealed devices show a doubled power conversion efficiency compared to nonannealed devices, due to the higher short-circuit current (J(sc)) and fill factor (FF), but with a lower open circuit voltage (V-oc). On the basis of the morphology-mobility examination by several scanning force microscopy techniques, and by grazing-incidence wide-angle X-ray scattering, we conclude that better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help in charge generation and meanwhile reduce recombination. Photoluminescence, electroluminescence, and light intensity dependence measurements reveal how this morphological change affects charge generation and recombination. As a result, the J(sc) and FF are significantly improved. However, the smaller band gap and the higher HOMO level of TQ1 upon annealing causes a lower V-oc. The blend of an amorphous polymer TQ1, and a semi-crystalline polymer N2200, can thus be modified by thermal annealing to double the power conversion efficiency.

    Place, publisher, year, edition, pages
    ROYAL SOC CHEMISTRY, 2016
    National Category
    Biological Sciences
    Identifiers
    urn:nbn:se:liu:diva-127066 (URN)10.1039/c6ta00531d (DOI)000371967000030 ()
    Note

    Funding Agencies|Swedish Energy Agency; Swedish Research council, NSFC [21504006, 21534003]; Knut and Alice Wallenberg Foundation through a Wallenberg scholar grant; China Scholarship Council (CSC); graduate student short-term abroad research project of Jinan University; program for the Excellent Doctoral Dissertations of Guangdong Province [ybzzxm201114]; U.S. Department of Energy [DE-AC02-05CH11231]

    Available from: 2016-04-13 Created: 2016-04-13 Last updated: 2019-01-04
    2. Semitransparent all-polymer solar cells through lamination
    Open this publication in new window or tab >>Semitransparent all-polymer solar cells through lamination
    2018 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 42, p. 21186-21192Article in journal (Refereed) Published
    Abstract [en]

    In this work, we demonstrate all-polymer solar cells where all the layers are made from polymers. We use PEDOT:PSS as the semitransparent anode and polyethyleneimine modified PEDOT:PSS as the semitransparent cathode, both of which are slot-die printed on polyethylene terephthalate (PET). Active layers are deposited on the cathode and anode surfaces by spin coating separately. These layers are then joined through a roll-to-roll compatible lamination process. This results in a semitransparent and flexible solar cell. We have used two polymer-polymer systems and several combinations, and the highest power conversion efficiency (PCE) obtained is 2.3% with a mean transparency amp;gt;35% within the visible light range. By laminating a thin layer acceptor polymer to a thick polymer-polymer blend, we can improve the performance by reducing recombination, compared to laminating blend to blend, which is verified by the trap-limited charge transport, CELIV and electroluminescence.

    Place, publisher, year, edition, pages
    ROYAL SOC CHEMISTRY, 2018
    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:liu:diva-153535 (URN)10.1039/c8ta07992g (DOI)000451600200066 ()
    Note

    Funding Agencies|Swedish Energy Agency; Knut and Alice Wallenberg foundation (KAW); China Scholarship Council (CSC)

    Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2019-03-25
    3. Large-Area, Semitransparent, and Flexible All-Polymer Photodetectors
    Open this publication in new window or tab >>Large-Area, Semitransparent, and Flexible All-Polymer Photodetectors
    Show others...
    2018 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 48, article id 1805570Article in journal (Refereed) Published
    Abstract [en]

    Photodetectors, converting optical signals from specific wavelengths to electrical signals, have many applications on photoimaging, optical communication, and environmental monitoring. Solution-processed organic photodetectors (OPDs) based on organic materials emerge promise especially for wearable electronics and smart buildings. In this work, new all-polymer photodetectors (all-PPDs) are developed based on bulk-heterojunction active layers which incorporate a donor polymer and an acceptor polymer. The inverted all-PPDs exhibit outstanding external quantum efficiency over 70%, low dark current density (J(d)) of 1.1 x 10(-8) A cm(-2), and high detectivity (D*) over 3.0 x 10(12) Jones with planar response over the entire visible range. It is one of the best-performing all-PPDs reported so far and is also comparable with many organic and inorganic photodetectors. By using lamination technique, large-area, semitransparent, flexible, and "fully" polymeric photodetectors are successfully fabricated for the first time, with D* over 10(11) Jones for double-side light detection. The results highlight the great potential for producing high-performance all-PPDs by taking advantages of various device architecture and solution-processing techniques.

    Place, publisher, year, edition, pages
    WILEY-V C H VERLAG GMBH, 2018
    Keywords
    all-polymer photodetectors; conjugated polymers; flexible electronics; semitransparent electronics
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-153367 (URN)10.1002/adfm.201805570 (DOI)000451118800014 ()
    Note

    Funding Agencies|Knut and Alice Wallenberg foundation through a Wallenberg Scholar grant; Ocean University of China; Ministry of Science and Technology [2016YFA0200700]; National Natural Science Foundation of China [21704082, 21875182, 21534003, 51320105014]; China Postdoctoral Science Foundation [2017M623162]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; China Scholarship Council (CSC)

    Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2019-01-04
  • 16.
    Yang, Jianming
    et al.
    East China Normal Univ, Peoples R China.
    Hong, Qiuming
    Soochow Univ, Peoples R China.
    Yuan, Zhongcheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xu, Ruipeng
    Soochow Univ, Peoples R China.
    Guo, Xuewen
    East China Normal Univ, Peoples R China.
    Xiong, Shaobing
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Li, Yanqing
    Soochow Univ, Peoples R China.
    Tang, Jianxin
    Soochow Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Bao, Qinye
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China; Soochow Univ, Peoples R China.
    Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment2018In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 6, no 20, article id 1800262Article in journal (Refereed)
    Abstract [en]

    Organometal halide perovskites exhibit a bright future for applications in solar cells, as efficiency has achieved over 22%. The long-term stability remains a major obstacle for commercialization. Here, it is found that three cationic compositional engineered perovskites, MAPb(I0.83Br0.17)(3), FA(0.83)MA(0.17)Pb(I0.83Br0.17)(3), and Cs-0.1(FA(0.83)MA(0.17))(0.9)Pb(I0.83Br0.17)(3), undergo severe degradation under white-light illumination in ultrahigh vacuum (UHV) environment, but the rate of degradation is significantly lower for the mixed cation perovskites. This is attributed to the defect-induced trap states that trigger the strong coupling between the photoexcited carriers and the crystal lattice. The observed behavior supports the view of the mixed cations suppressing the photoinduced degradation. It is further demonstrated that UHV environment remarkably accelerates the degradation of the perovskite films under illumination, which delivers a very important message that the current hybrid perovskite materials and their optoelectronic devices are not suitable for application in outer space. Moreover, the applied UHV environment can be an accelerated test method to estimate the photostability of the perovskites.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf