liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abrahamsson, Louise
    Linköping University, Department of Thematic Studies, Tema Environmental Change.
    Improving methane production using hydrodynamic cavitation as pre-treatment2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    To develop anaerobic digestion (AD), innovative solutions to increase methane yields in existing AD processes are needed. In particular, the adoption of low energy pre-treatments to enhance biomass biodegradability is needed to provide efficient digestion processes increasing profitability. To obtain these features, hydrodynamic cavitation has been evaluated as an innovative solutions for AD of waste activated sludge (WAS), food waste (FW), macro algae and grass, in comparison with steam explosion (high energy pre-treatment). The effect of these two pre-treatments on the substrates, e.g. particle size distribution, soluble chemical oxygen demand (sCOD), biochemical methane potential (BMP) and biodegradability rate, have been evaluated. After two minutes of hydrodynamic cavitation (8 bar), the mean fine particle size decreased from 489- 1344 nm to 277- 381 nm (≤77% reduction) depending of the biomasses. Similar impacts were observed after ten minutes of steam explosion (210 °C, 30 bar) with a reduction in particle size between 40% and 70% for all the substrates treated.  In terms of BMP value, hydrodynamic cavitation caused significant increment only within the A. nodosum showing a post treatment increment of 44% compared to the untreated value, while similar values were obtained before and after treatment within the other tested substrates. In contrast, steam explosion allowed an increment for all treated samples, A. nodosum (+86%), grass (14%) and S. latissima (4%). However, greater impacts where observed with hydrodynamic cavitation than steam explosion when comparing the kinetic constant K. Overall, hydrodynamic cavitation appeared an efficient pre-treatment for AD capable to compete with the traditional steam explosion in terms om kinetics and providing a more efficient energy balance (+14%) as well as methane yield for A. nodosum.

  • 2.
    Andersson, Jim
    et al.
    Luleå University of Technology, Sweden.
    Lundgren, Joakim
    Luleå University of Technology, Sweden.
    Malek, Laura
    Lund University, Sweden.
    Hultegren, Christian
    Lund University, Sweden.
    Pettersson, Karin
    Chalmers University of Technology, Gothenburg, Sweden.
    Wetterlund, Elisabeth
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    System studies on biofuel production via integrated biomass gasification2013Report (Other academic)
    Abstract [en]

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly.

    The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for “fair” techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project.

    Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found.

    There are several reasons why the results of the reviewed techno-economic studies vary. Some examples are that different system boundaries have been set and that different technical and economic assumptions have been made, product yields and energy efficiencies may be calculated using different methods etc. For obvious reasons, the studies are not made in the same year, which means that different monetary exchange rates and indices have been applied. It is therefore very difficult, and sometimes even impossible, to compare the technical as well as the economic results from the different studies. When technical evaluations are to be carried out, there is no general method for how to set the system boundaries and no right or wrong way to calculate the system efficiencies as long as the boundaries and methods are transparent and clearly described. This also means that it becomes fruitless to compare efficiencies between different concepts unless the comparison is done on an exactly equal basis.

    However, even on an equal basis, a comparison is not a straight forward process. For example, calculated efficiencies may be based on the marginal supply, which then become very dependent on how the industries exploit their resources before the integration. The resulting efficiencies are therefore very site-dependent. Increasing the system boundaries to include all in- and outgoing energy carriers from the main industry, as well as the integrated gasification plant (i.e. total plant mass and energy balance), would inflict the same site-dependency problem. The resulting system efficiency is therefore a measure of the potential improvement that a specific industry could achieve by integrating a biomass gasification concept.

    When estimating the overall system efficiency of industrial biorefinery concepts that include multiple types of product flows and energy sources, the authors of this report encourage the use of electrical equivalents as a measure of the overall system efficiency. This should be done in order to take the energy quality of different energy carriers into concern.

    In the published economic evaluations, it has been found that there is a large number of studies containing both integration and production cost estimates. However, the number of references for the cost data is rather limited. The majority of these have also been published by the same group of people and use the same or similar background information. The information in these references is based on quotes and estimates, which is good, however none of these are publically available and therefore difficult to value with respect to content and accuracy.

    It has further been found that the variance in the operational costs is quite significant. Something that is particularly true for biomass costs, which have a high variance. This may be explained by natural variations in the quality of biomass used, but also to the different markets studied and the dates when the studies were performed. It may be seen from the specific investment costs that there is a significant spread in the data. It may also be seen that the differences in capital employed and process yields will result in quite large variations in the production cost of the synthetic fuels. On a general note, the studies performed are considering future plants and in some cases assumes technology development. It is therefore relevant to question the use of today’s prices of utilities and feedstock’s. It is believed that it would be more representative to perform some kind of scenario analysis using different parameters resulting in different cost assumptions to better exemplify possible futures.

    Due to the surprising lack of reports and articles regarding integration of biomass gasifiers in sawmills, it would be of great interest to carry out such a study. Also larger scale wood pellet production plants could be of interest as a potential gasification based biorefinery.

  • 3.
    Björn (Fredriksson), Annika
    et al.
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Shakeri Yekta, Sepehr
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Ziels, Ryan
    Linköping University, Biogas Research Center. Department of Civil Engineering, University of British Columbia, Columbia, Canada.
    Karl, Gustafsson
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Svensson, Bo H
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Anna, Karlsson
    Linköping University, Biogas Research Center. Scandinavian Biogas Fuels AB, Stockholm, Sweden.
    Feasibility of OFMSW co-digestion with sewage sludge for increasing biogas production at wastewater treatment plants2017In: Euro-Mediterranean Journal for Environmental Integration, ISSN 2365-6433, Vol. 2, no 21Article in journal (Refereed)
    Abstract [en]

    Sweden has the ambition to increase its annual biogas production from the current level of 1.9 to 15 TWh by 2030. The unused capacity of existing anaerobic digesters at wastewater treatment plants is among the options to accomplish this goal. This study investigated the feasibility of utilizing the organic fraction of municipal solid waste (OFMSW) as a co-substrate, with primary and waste-activated sewage sludge (PWASS) for production of biogas, corresponding to 3:1 ratio on volatile solid (VS) basis. The results demonstrated that co-digestion of OFMSW with PWASS at an organic loading rate of 5 gVS l−1 day−1 has the potential to increase the biogas production approximately four times. The daily biogas production increased from 1.0 ± 0.1 to 3.8 ± 0.3 l biogasl−1 day−1, corresponding to a specific methane production of 420 ± 30 Nml methane gVS−1 during the laboratory experiment. Co-digestion of OFMSW with PWASS showed a 50:50 distribution of hydrogenotrophic and aceticlastic methanogens in the digester and enhanced the turnover kinetics of intermediate products (acetate, propionate, and oleate). Practical limitations potentially include the need for sludge dewatering to maintain a sufficient hydraulic retention time (17 days in this study), as well as additional energy consumption for mixing due to an increased sludge apparent viscosity (from 1.8 ± 0.1 to 45 ± 4.8 mPa*s in this study) at elevated OFMSW-loading rates.

  • 4.
    Choong, Ferdinand X.
    et al.
    Karolinska Institute, Sweden.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Steiner, Svava E.
    Karolinska Institute, Sweden.
    Melican, Keira
    Karolinska Institute, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Edlund, Ulrica
    KTH Royal Institute Technology, Sweden.
    Richter-Dahlfors, Agneta
    Karolinska Institute, Sweden.
    Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 35578Article in journal (Refereed)
    Abstract [en]

    Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form. We exploited this finding using spectrofluorometric methods and fluorescence confocal laser scanning microscopy, for sensitive, simultaneous determination of the structural and compositional complexities of native lignocellulosic biomass. With exceptional photostability, p-HTEA is also demonstrated as a dynamic sensor for real-time monitoring of enzymatic cellulose degradation in cellulolysis. These results demonstrate the use of p-HTEA as a non-destructive tool for the determination of cellulose, hemicellulose and lignin in complex biomass matrices, thereby aiding in the optimization of biomass-converting technologies.

  • 5.
    Ekstrand, Eva-Maria
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Anaerobic digestion in the kraft pulp and paper industry: Challenges and possibilities for implementation2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The pulp and paper industry is a large producer of wastewater and sludge, putting high pressure on waste treatment. In addition, more rigorous environmental legislation for pollution control and demands to increase the use of renewable energy have put further pressure on the pulp and paper industry’s waste treatment, where anaerobic digestion (AD) and the production of methane could pose a solution. Kraft pulping makes up 80% of the world production of virgin wood pulp, thus, the wastewaters from this sector represent a large unused potential for methane production.

    There are three main types of substrates available for AD at pulp and paper mills, the wastewaters, the primary sludge/fibre sludge, and the waste activated sludge. AD treatment of these streams has been associated with several challenges, such as the presence of inhibiting compounds or low degradability during AD. The aim of this thesis was to experimentally address these challenges and potentials, focusing on wastes from kraft mills.

    Methane potential batch tests showed that many wastewater streams still posed challenges to AD, but the alkaline elemental chlorine-free bleaching stream and the condensate effluents had good methane potentials. Further, the methane potential of kraft mill fibre sludge was high, and co-digestion of kraft mill fibre sludge and waste activated sludge was feasible in stirred tank reactors with sludge recirculation. By increasing the organic loading in a pilot-scale activated sludge facility and thereby lowering the sludge age, the degradability of the waste activated sludge was improved. The higher wastewater treatment capacity achieved by this method provides an opportunity for the mills to increase their pulp and paper production. Further, by dewatering the digestate after AD and returning the liquid to the activated sludge treatment, costs for nutrient supplementation can be reduced.

    In conclusion, the thesis shows that AD of wastes from the kraft pulp and paper industry was feasible and carried many benefits regarding the generation of methane as a renewable energy carrier, improved wastewater treatment and reduced costs. Different strategies on how AD may be implemented in the kraft pulp and paper industry were formulated and discussed.

    List of papers
    1. Methane potentials of the Swedish pulp and paper industry - A screening of wastewater effluents
    Open this publication in new window or tab >>Methane potentials of the Swedish pulp and paper industry - A screening of wastewater effluents
    Show others...
    2013 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, p. 507-517Article in journal (Refereed) Published
    Abstract [en]

    With the final aim of reducing the energy consumption and increase the methane production at Swedish pulp and paper mills, the methane potential of 62 wastewater effluents from 10 processes at seven pulp and/or paper mills (A-G) was determined in anaerobic batch digestion assays. This mapping is a first step towards an energy efficient and more sustainable utilization of the effluents by anaerobic digestion, and will be followed up by tests in lab-scale and pilot-scale reactors. Five of the mills produce kraft pulp (KP), one thermo-mechanical pulp (TMP), two chemical thermo-mechanical pulp (CTMP) and two neutral sulfite semi-chemical (NSSC) pulp. Both elementary and total chlorine free (ECF and TCF, respectively) bleaching processes were included. The effluents included material from wood rooms, cooking and oxygen delignification, bleaching (often both acid- and alkali effluents), drying and paper/board machinery as well as total effluents before and after sedimentation. The results from the screening showed a large variation in methane yields (percent of theoretical methane potential assuming 940 NmL CH4 per g TOC) among the effluents. For the KP-mills, methane yields above 50% were obtained for the cooking effluents from mills D and F, paper machine wastewater from mill D, condensate streams from mills B, E and F and the composite pre-sedimentation effluent from mill D. The acidic ECF-effluents were shown to be the most toxic to the AD-flora and also seemed to have a negative effect on the yields of composite effluents downstream while three of the alkaline ECF-bleaching effluents gave positive methane yields. ECF bleaching streams gave higher methane yields when hardwood was processed. All TCF-bleaching effluents at the KP mills gave similar degradation patterns with final yields of 10-15% of the theoretical methane potential for four of the five effluents. The composite effluents from the two NSSC-processes gave methane yields of 60% of the theoretical potential. The TMP mill (A) gave the best average yield with all six effluents ranging 40-65% of the theoretical potential. The three samples from the CTMP process at mill B showed potentials around 40% while three of the six effluents at mill G (CTMP) yielded 45-50%.

    Place, publisher, year, edition, pages
    Elsevier, 2013
    Keywords
    Biogas; Anaerobic digestion; Kraft pulp; Chemical thermo-mechanical pulp; Neutral sulfite semi-chemical pulp; Bleaching
    National Category
    Social Sciences
    Identifiers
    urn:nbn:se:liu:diva-104129 (URN)10.1016/j.apenergy.2012.12.072 (DOI)000329377800053 ()
    Available from: 2014-02-07 Created: 2014-02-07 Last updated: 2019-05-07
    2. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation
    Open this publication in new window or tab >>High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation
    Show others...
    2016 (English)In: Waste Management, ISSN 0956-053X, E-ISSN 1879-2456, Vol. 56, p. 166-172Article in journal (Refereed) Published
    Abstract [en]

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for thebiogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibresludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation.Two lab-scale reactors (4L) were run for 800 days, one on fibre sludge (R1), and the other on fibre sludgeand activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, theCa:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abatedby short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robustconditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4 gvolatile solids (VS) L1 day1, a hydraulic retention time of 4 days and a methane production of230 ± 10 Nm L per g VS.

    Place, publisher, year, edition, pages
    Elsevier, 2016
    Keywords
    Pulp and paper Anaerobic digestion Sludge recirculation High-rate CSTR Fibre sludge Activated sludge
    National Category
    Renewable Bioenergy Research Production Engineering, Human Work Science and Ergonomics Production Engineering, Human Work Science and Ergonomics Water Engineering
    Identifiers
    urn:nbn:se:liu:diva-131780 (URN)10.1016/j.wasman.2016.06.034 (DOI)000383827700020 ()27453288 (PubMedID)
    Funder
    Swedish Energy Agency
    Note

    Funding agencies: Swedish Energy Agency [32802-1]; Scandinavian Biogas Fuels AB; Poyry AB; BillerudKorsnas AB; SCA; Fiskeby Board AB; Purac AB

    Available from: 2016-10-05 Created: 2016-10-05 Last updated: 2019-05-07Bibliographically approved
    3. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill
    Open this publication in new window or tab >>Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill
    2018 (English)In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 77, no 8, p. 2068-2076Article in journal (Refereed) Published
    Abstract [en]

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2–4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH4/g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

    Keywords
    Activated sludge, sludge age, anaerobic digestion, biochemical methane potential, CSTR, pulp and paper
    National Category
    Bioprocess Technology
    Identifiers
    urn:nbn:se:liu:diva-146089 (URN)10.2166/wst.2018.120 (DOI)000435663800011 ()29722692 (PubMedID)
    Note

    Funding agencies: Swedish Energy Agency [32802-2]; Scan-dinavian Biogas Fuels AB; Poyry AB; BillerudKorsnas AB; SCA; Fiskeby Board AB; Purac AB

    Available from: 2018-05-07 Created: 2018-05-07 Last updated: 2019-05-07Bibliographically approved
  • 6.
    Haglund, Emelie
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Systematisk bedömning av våtmarksväxter som substrat för biogasproduktion2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Two environmental problems today are the increased concentrations of greenhouse gases in the atmosphere and eutrophication.  Therefore, two challenges are reducing greenhouse gas emissions and fluxes of nutrients. Another challenge is to secure the energy supply in a world where energy demand is increasing. New renewable energy sources need to be developed both to secure the energy supply, but also to reduce the use of fossil energy. A renewable energy source is biogas that can be used for electricity, heating and as vehicle fuel. It is predicted that substrate for biogas production will be a limitation in the future, therefore, new substrate need to be evaluated. Wetland plants are an alternative substrate for biogas production and evaluated in this study.  Wetlands and it is plants are interesting to study because they can reduce the concentration of nutrients and therefore help to reduce the problem of eutrophication.  The study was performed within a project at Biogas Research Center and was a literature study with the study of a case. The method used has been developed in the project and is a Multi Criteria Assessment (MCA), which means that there are several different areas being studied. Areas taking into account the biological, economic, chemical, environmental and technological aspects. In order to structure the data, a matrix consisting of the different key areas was used. To clarify the opportunities and obstacles a semi-qualitative assessment was done for each key area. The case studied was a wetland in an agricultural landscape. The wetland is 5 ha and was constructed a few years ago to work as nitrogen and phosphorous trap. There is no vegetation in the wetland because it is relatively new. The plants that were studied during the study was therefore plants that are potential to grow in the wetland in the future. The studied plants were reed, reed canary grass and cattail. In the wetland it is possible to regulate the water and thereby drain the water to facilitate harvesting.   The results showed that the technology available today for the harvesting and chopping needs to be developed because it does not meet the required standards. There are various techniques for digestion, but since the dry matter is high for the plants dry fermentation is preferable, or a two-stage system in which the first step is dry digestion. A wetland provides a relatively small amount of biomass and therefore it is better to co-digest the plants on a farm biogas plant.  Wetland plants are not approved substrates for certification of bio fertilizer, which can be an obstacle. The bio fertilizer also has a low value because the plants contain low levels of nutrients.Wetlands reduce the amount of nutrients and harvest of wetland plants contributes to the retention of phosphorus increases. Wetlands emit methane and nitrous oxide that affect global warming.Today, there is no economic viability of harvesting wetlands. A system in which compensation is obtained for the environmental benefit that harvest provides is an option to increase profitability.

  • 7.
    Hansson, Anna
    Linköping University, Department of Physics, Chemistry and Biology.
    Mechanism of zeolite activity in biogas co-digestion2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Biogas is a source of renewable energy and is produced at anaerobic conditions. The gas consists mainly of methane (55-70 %) and carbon dioxide (30-45 %). Biogas can be used as vehicle fuel after the gas has been upgraded to a methane content of approximately 97 %. There are several companies in Sweden producing biogas. Svensk biogas AB in Linköping is one of the largest. The company has two biogas production plants; one in Linköping and one in Norrköping.

    To meet the surge demand for biogas it is not only important to increase the volumetric capacity of the digesters, but also to optimize the process at the existing production plants in different ways. Zeolites, a clay mineral, have earlier been shown to have a positive effect on anaerobic digestion of certain substrates. The aim of this master’s thesis was to investigate if the organic loading rate could be increased and/or if the hydraulic retention time could be reduced by addition of zeolites to a reactor treating slaughterhouse waste as a substrate. The aim was further to investigate which substance/substances that zeolites possibly could affect.

    Addition of the zeolite clinoptilolite in a continuously stirred lab tank reactor showed a significantly lower accumulation of volatile fatty acids compared to that in a control reactor without zeolites added, when the hydraulic retention time was kept low (30 days) and the organic loading rate was high (4.8 kg VS/ (m3 × day)). The same results were observed upon zeolite addition in a batch experiment, which also showed a decreased lag phase. Neither the specific gas production nor the methane concentration was significantly affected by addition of zeolites. Furthermore, addition of a possible inhibitor, long-chain fatty acids (LCFA), increased the lag phase further when slaughterhouse waste was used as a substrate. The conclusion from the observed results is that a metabolite or metabolites produced during the anaerobic degradation is/are the reason to inhibition and an increased lag phase.

  • 8.
    Hellman, Emil
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Lagringstidens påverkan på metanpotentialen i matavfall2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Biogas is a renewable energy source that is produced when organic materials like food waste is degraded by microorganisms under anaerobic (oxygen-free) conditions. The Swedish Government has set goals for a higher sorting of food waste, leading to increased amounts of available substrate for biogas production.

    Collected food waste begin to break down during the time it is transported and stored. The purpose of this study was to investigate the length of the storage, produce a representative recipe for an average food waste in Sweden and evaluate how much methane potential is lost from food waste with respect to the storage time, collection method (paper or plastic bag) and storage temperature (22°C and 6°C) through laboratory tests.

    The average storage time of food waste from houses and apartment buildings in the survey was six days. A recipe for food waste has been developed with the help of literature search and modification of recipes in ‘’Avfall Sverige’’ report U2010:10. Laboratory tests showed that the difference in methane potential between the plastic and paper were clear at 22°C, with decreasing methane potential, but non-existent at 6°C.

    To achieve maximum methane production from food waste during the warmer part of the year, plastic bags are better because they have a preservative effect on the food waste. This can be related to the fact that plastic are denser than paper and therefore holds volatile compounds better.

  • 9.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering. Linköping University, Biogas Research Center.
    Lindkvist, Emma
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering. Linköping University, Biogas Research Center.
    Rosenqvist, Jakob
    Tranås Energi, Sweden.
    Methodology for Analysing Energy Demand in Biogas Production Plants: A Comparative Study of Two Biogas Plants2017In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 11, article id 1822Article in journal (Refereed)
    Abstract [en]

    Biogas production through anaerobic digestion may play an important role in a circular economy because of the opportunity to produce a renewable fuel from organic waste. However, the production of biogas may require energy in the form of heat and electricity. Therefore, resource-effective biogas production must consider both biological and energy performance. For the individual biogas plant to improve its energy performance, a robust methodology to analyse and evaluate the energy demand on a detailed level is needed. Moreover, to compare the energy performance of different biogas plants, a methodology with a consistent terminology, system boundary and procedure is vital. The aim of this study was to develop a methodology for analysing the energy demand in biogas plants on a detailed level. In the methodology, the energy carriers are allocated to: (1) sub-processes (e.g., pretreatment, anaerobic digestion, gas cleaning), (2) unit processes (e.g., heating, mixing, pumping, lighting) and (3) a combination of these. For a thorough energy analysis, a combination of allocations is recommended. The methodology was validated by applying it to two different biogas plants. The results show that the methodology is applicable to biogas plants with different configurations of their production system.

  • 10.
    Karlsson, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Biotechnology.
    Modeling and simulation of existing biogas plants with SIMBA#Biogas2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The main purpose of this project was an attempt to modulate and simulate two existing biogas plant, situated in Lidköping and Katrineholm, Sweden and evaluate how the process reacts to certain conditions regarding feeding, layout and substrate mixture. The main goal was to optimize the existing processes to better performance. Both the modeling and simulation were executed in SIMBA#Biogas with accordance to the real conditions at the plant in question. The simulation of each model was validated against data containing measurements of, CH4 yield, CH4 production, TS, VS, NH4-N concentration and N-total concentration. The data was obtained from each plant in accordance with scheduled follow ups. Both models were statistically validated for several predictions. Predictions of N-total and NH4-N concentration failed for some cases. Both plants were tested with new process lay outs, where promising results were obtained. The Lidköping model was provided with a post-hygienization step to handle ABPs. The Katrineholm model was provided with a dewatering unit, where 35% of the centrate was recirculated back to the system. Both setups was configured to yield the highest CH4 production. This study suggests that SIMBA#Biogas can be a tool for predictions and optimizations of the biogas process.

  • 11.
    Martin, Michael
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Industrial Symbiosis in the Biofuel Industry: Quantification of the Environmental Performance and Identification of Synergies2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The production of biofuels has increased in recent years, to reduce the dependence on fossil fuels and mitigate climate change. However, current production practices are heavily criticized on their environmental sustainability. Life cycle assessments have therefore been used in policies and academic studies to assess the systems; with divergent results. In the coming years however, biofuel production practices must improve to meet strict environmental sustainability policies.

    The aims of the research presented in this thesis, are to explore and analyze concepts from industrial symbiosis (IS) to improve the efficiency and environmental performance of biofuel production and identify possible material and energy exchanges between biofuel producers and external industries.

    An exploration of potential material and energy exchanges resulted in a diverse set of possible exchanges. Many exchanges were identified between biofuel producers to make use of each other’s by-products. There is also large potential for exchanges with external industries, e.g. with the food, energy and chemical producing industries. As such, the biofuel industry and external industries have possibilities for potential collaboration and environmental performance improvements, though implementation of the exchanges may be influenced by many conditions.

    In order to analyze if concepts from IS can provide benefits to firms of an IS network, an approach was created which outlines how quantifications of IS networks can be produced using life cycle assessment literature for guidelines and methodological considerations. The approach offers methods for quantifying the environmental performance for firms of the IS network and an approach to distribute impacts and credits for the exchanges between firm, to test the assumed benefits for the firms of the IS network.

    Life cycle assessment, and the approach from this thesis, have been used to quantify the environmental performance of IS networks by building scenarios based on an example from an IS network of biofuel producers in Sweden. From the analyses, it has been found that exchanges of material and energy may offer environmental performance improvements for the IS network and for firms of the network. However, the results are dependent upon the methodological considerations of the assessments, including the reference system, functional unit and allocation methods, in addition to important processes such as the agricultural inputs for the system and energy systems employed.

    By using industrial symbiosis concepts, biofuel producers have possibilities to improve the environmental performance. This is done by making use of by-products and waste and diversifying their products, promoting a transition toward biorefinery systems and a bio-based economy for regional environmental sustainability.

    List of papers
    1. Improving the Environmental Performance of Biofuels with Industrial Symbiosis
    Open this publication in new window or tab >>Improving the Environmental Performance of Biofuels with Industrial Symbiosis
    2011 (English)In: Biomass and Bioenergy, ISSN 0961-9534, Vol. 35, no 5, p. 1747-1755Article in journal (Refereed) Published
    Abstract [en]

    In the production of biofuels for transport many critics have argued about the poor energyefficiency and environmental performance of the production industries. Optimism is thusset on the production of second generation biofuels, while first generation biofuelscontinue to dominate worldwide. Therefore it is interesting to consider how the environmentalperformance of first generation biofuel industries can be improved. The field ofindustrial symbiosis offers many possibilities for potential improvements in the biofuelindustry and theories from this research field are used in this paper to highlight howenvironmental performance improvements can be accomplished. This comes in the formof by-product synergies and utility synergies which can improve material and energyhandling. Furthermore, the processes and products can gain increased environmentalperformance improvements by the adaption of a renewable energy system which will actas a utility provider for many industries in a symbiotic network. By-products may thereafterbe upcycled through biogas production processes to generate both energy and a biofertilizer. A case study of an actual biofuel industrial symbiosis is also reviewed to providesupport for these theories.

    Place, publisher, year, edition, pages
    Elsevier, 2011
    Keywords
    Industrial Symbiosis, Biogas, Biofuel, Synergies, Industrial Symbiosis, Biogas, Biofuel, Synergies, Industrial Symbiosis, Biogas, Biofuel, Synergies, Industrial Symbiosis, Biogas, Biofuel, Synergies, Industrial Symbiosis, Biogas, Biofuel, Synergies, Industrial Symbiosis, Biogas, Biofuel, Synergies, Industrial Symbiosis, Biogas, Biofuel, Synergies, Industrial Symbiosis, Biogas, Biofuel, Synergies
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-67189 (URN)10.1016/j.biombioe.2011.01.016 (DOI)000290238200017 ()
    Funder
    Formas
    Available from: 2011-04-04 Created: 2011-04-04 Last updated: 2019-06-13
    2. Production synergies in the current biofuel industry: Opportunities for development
    Open this publication in new window or tab >>Production synergies in the current biofuel industry: Opportunities for development
    2012 (English)In: Biofuels, ISSN 1759-7269, E-ISSN 1759-7277, Vol. 3, no 5, p. 545-554Article in journal (Refereed) Published
    Abstract [en]

    Background: With criticism about the economic viability and environmental performance of biofuels, theuse of byproducts and integration with external industries could be achieved to improve their performanceand provide further use for byproducts and wastes. Methodology: A review of potential byproduct andutility exchanges between biofuel and external industries has been documented in this article through aliterature review and brainstorming workshop, and results have been classified based on their interactions.Results: It has been found that byproduct exchanges, especially those between biofuel industries, andexchanges between the biofuel industries and the food, feed, agriculture and energy industries, offer manypotential exchanges. Conclusion: The identified synergies offer possibilities for potential collaborationpartners in symbiotic exchanges with the biofuel industry.

    Place, publisher, year, edition, pages
    London: Future Science, 2012
    Keywords
    Biofuels, Synergies, By-product, Industrial Symbiosis
    National Category
    Environmental Sciences
    Identifiers
    urn:nbn:se:liu:diva-84548 (URN)10.4155/bfs.12.52 (DOI)
    Funder
    Formas
    Available from: 2012-10-12 Created: 2012-10-12 Last updated: 2017-12-07
    3. Quantifying the environmental performance of integrated bioethanol and biogas production
    Open this publication in new window or tab >>Quantifying the environmental performance of integrated bioethanol and biogas production
    2014 (English)In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 6, p. 109-116Article in journal (Refereed) Published
    Abstract [en]

    As the production of biofuels continues to expand worldwide, criticism about, e.g. the energy output versus input and the competition with food has been questioned. However, biofuels have the possibility to be optimized in order to improve the environmental performance. This could be accomplished through the use of concepts from industrial symbiosis. This paper provides a quantification of the environmental performance of industrial symbiosis in the biofuel industry through integration of biogas and ethanol processes using a life cycle approach. Results show that although increasing integration is assumed to produce environmental benefits, not all impact categories have achieved this and the results depend upon the allocation methods, energy system and assumptions chosen.

    Place, publisher, year, edition, pages
    Elsevier, 2014
    Keywords
    Ethanol, Biogas, Industrial symbiosis, Environmental impacts, Biofuel, Life cycle assessment
    National Category
    Renewable Bioenergy Research Bioenergy Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-86218 (URN)10.1016/j.renene.2012.09.058 (DOI)000326141000018 ()
    Available from: 2012-12-11 Created: 2012-12-11 Last updated: 2019-06-13
    4. Who gets the benefits? An approach for assessing the environmental performance of industrial symbiosis
    Open this publication in new window or tab >>Who gets the benefits? An approach for assessing the environmental performance of industrial symbiosis
    2015 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 98, p. 263-271Article in journal (Refereed) Published
    Abstract [en]

    Industrial symbiosis networks are generally assumed to provide economic and environmental benefits for all firms involved, though few quantifications have been produced in the literature, and the methods for these quantifications have varied. This paper provides an approach to quantify the environmental performance of industrial symbiosis networks using guidance from the literature of life cycle assessment. Additionally, an approach to distribute credits due to exchanges for firms in the industrial symbiosis network is outlined. From the approach, influential methodological considerations used for the quantifications are discussed, including e.g. the production of reference systems, allocation methods, system boundaries and functional unit. The implications of such an approach may be beneficial for the industrial symbiosis community and provide information crucial for taxes, subsidies, business relations, expansion possibilities for the network, marketing and other issues related to the environmental performance of firms in the industrial symbiosis network.

    Place, publisher, year, edition, pages
    Elsevier, 2015
    Keywords
    Industrial symbiosis, life cycle assessment, by-product, integration, environmental performance
    National Category
    Environmental Sciences Environmental Engineering Bioenergy Renewable Bioenergy Research
    Identifiers
    urn:nbn:se:liu:diva-90232 (URN)10.1016/j.jclepro.2013.06.024 (DOI)000356194300027 ()
    Available from: 2013-03-21 Created: 2013-03-21 Last updated: 2019-06-13Bibliographically approved
    5. Using LCA to quantify the environmental performance of an industrial symbiosis network: Application in the Biofuels Industry
    Open this publication in new window or tab >>Using LCA to quantify the environmental performance of an industrial symbiosis network: Application in the Biofuels Industry
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    It is generally assumed that industrial symbiosis creates economic and environmental benefits for all firms involved, though few quantifications have been produced. The environmental performance of an industrial symbiosis network will be quantified using an approach from previous literature. Additionally, the benefits provided by exchanges have partitioned to firms taking part in the industrial symbiosis network, which may have implications for tax incentives, marketing, expansion and environmental awareness. The current industrial symbiosis network has been found to have benefits compared to reference scenarios produced. However, methodological choices, such as the choice of reference scenario and allocation methods may significantly influence the results of the environmental performance.

    Keywords
    Industrial symbiosis, life cycle assessment, by-product, integration, environmental performance
    National Category
    Environmental Sciences Environmental Engineering Renewable Bioenergy Research Bioenergy
    Identifiers
    urn:nbn:se:liu:diva-90229 (URN)
    Available from: 2013-03-21 Created: 2013-03-21 Last updated: 2018-01-11
  • 12.
    Martin, Michael
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Using LCA to quantify the environmental performance of an industrial symbiosis network: Application in the Biofuels IndustryManuscript (preprint) (Other academic)
    Abstract [en]

    It is generally assumed that industrial symbiosis creates economic and environmental benefits for all firms involved, though few quantifications have been produced. The environmental performance of an industrial symbiosis network will be quantified using an approach from previous literature. Additionally, the benefits provided by exchanges have partitioned to firms taking part in the industrial symbiosis network, which may have implications for tax incentives, marketing, expansion and environmental awareness. The current industrial symbiosis network has been found to have benefits compared to reference scenarios produced. However, methodological choices, such as the choice of reference scenario and allocation methods may significantly influence the results of the environmental performance.

  • 13.
    Martin, Michael
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Parsapour, Amin
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Upcycling wastes with biogas production:: An exergy and economic analysis2012In: Venice 2012: International Symposium on Energy from Biomass and Waste, Venice, Italy, 2012Conference paper (Other academic)
    Abstract [en]

    The massive consumption of finite resources creates high economical and environmental costs due to material dispersion and waste generation. In order to overcome this, by-products and wastes may be used, to avoid the use of virgin materials and benefit from the useful inherent energy of the material. By adding value to the material, economic and environmental performance can be improve, which is called upcycling. In this paper, an exergy and economic analysis of a biogas process is examined. In order to investigate if biogas production from wastes can upcycle materials, biogas production from a by-product from the brewing process is examined. From the analysis, the process is found to upcycle the by-product with an increase in exergy and economic benefit due to the generation of biomethane and biofertilizer. This analysis thus shows that by using by-products as such, the sustainability of the system may improve.

  • 14.
    Martin, Michael
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Svensson, Niclas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Who gets the benefits? An approach for assessing the environmental performance of industrial symbiosis2015In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 98, p. 263-271Article in journal (Refereed)
    Abstract [en]

    Industrial symbiosis networks are generally assumed to provide economic and environmental benefits for all firms involved, though few quantifications have been produced in the literature, and the methods for these quantifications have varied. This paper provides an approach to quantify the environmental performance of industrial symbiosis networks using guidance from the literature of life cycle assessment. Additionally, an approach to distribute credits due to exchanges for firms in the industrial symbiosis network is outlined. From the approach, influential methodological considerations used for the quantifications are discussed, including e.g. the production of reference systems, allocation methods, system boundaries and functional unit. The implications of such an approach may be beneficial for the industrial symbiosis community and provide information crucial for taxes, subsidies, business relations, expansion possibilities for the network, marketing and other issues related to the environmental performance of firms in the industrial symbiosis network.

  • 15.
    Martin, Michael
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Svensson, Niclas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Fonseca, Jorge
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Quantifying the environmental performance of integrated bioethanol and biogas production2014In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 6, p. 109-116Article in journal (Refereed)
    Abstract [en]

    As the production of biofuels continues to expand worldwide, criticism about, e.g. the energy output versus input and the competition with food has been questioned. However, biofuels have the possibility to be optimized in order to improve the environmental performance. This could be accomplished through the use of concepts from industrial symbiosis. This paper provides a quantification of the environmental performance of industrial symbiosis in the biofuel industry through integration of biogas and ethanol processes using a life cycle approach. Results show that although increasing integration is assumed to produce environmental benefits, not all impact categories have achieved this and the results depend upon the allocation methods, energy system and assumptions chosen.

  • 16.
    Martin, Michael
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Svensson, Niclas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Fonseca, Jorge
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
    Who gets the benefits?: An approach for assessing the environmentalperformance of industrial symbiosis2012In: Greening of Industry Network: Support your future today! Turning environmental challenges into business opportunities, 2012Conference paper (Other academic)
    Abstract [en]

    It is generally assumed that industrial symbiosis creates economic and environmental benefits for all firmsinvolved, though only a few quantifications have been produced in the literature. An approach to quantifyenvironmental performance of industrial symbiosis using life cycle assessment has been provided,outlining the choice of functional unit, system boundaries, impact assessment and allocation as well as thedistribution of benefits among firms in the symbiotic activity. The implications of such an approach maybe beneficial for the industrial symbiosis and life cycle assessment communities and provide informationcrucial for taxes, subsidies, business relations, marketing and other issues related to the environmentalperformance of firms in the industrial symbiosis network.

  • 17.
    Martinez, Cristina A.
    et al.
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    Nohalez, Alicia
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    Parrilla, Inmaculada
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    Motas, Miguel
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    Roca, Jordi
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    Romero, Inmaculada
    CSIC, Spain.
    Garcia-Gonzalez, Diego L.
    CSIC, Spain.
    Cuello, Cristina
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    Rodriguez-Martinez, Heriberto
    Linköping University, Department of Clinical and Experimental Medicine, Division of Children's and Women's health. Linköping University, Faculty of Medicine and Health Sciences.
    Martinez, Emilio A.
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    Gil, Maria A.
    University of Murcia, Spain; IMIB Arrixaca, Spain.
    The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 10505Article in journal (Refereed)
    Abstract [en]

    The oil overlay micro-drop system is widely used for cultures of mammalian gametes and embryos. We evaluated hereby the effects of two unaltered commercial oils-Sigma mineral oil (S-MO) and Nidoil paraffin oil (N-PO)-on in vitro embryo production (IVP) outcomes using a pig model. The results showed that while either oil apparently did not affect oocyte maturation and fertilization rates, S-MO negatively affected embryo cleavage rates, blastocyst formation rates, and, consequently, total blastocyst efficiency of the system. No differences in the oxidation state were found between the oils or culture media incubated under S-MO or N-PO. Although both oils slightly differed in elemental composition, there were no differences in the concentrations of elements between fresh media and media incubated under oils. By contrast, we demonstrated clear oil-type differences in both the composition of volatile organic compounds (VOC) and the transfer of some of these VOCs (straight-chain alkanes and pentanal and 1,3-diethyl benzene) to the culture medium, which could have influenced embryonic development.

  • 18.
    Niklasson, Johanna
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management.
    Bergquist Skogfors, Linnea
    Linköping University, Department of Management and Engineering, Environmental Technology and Management.
    Can organic waste fuel the buses in Johannesburg?: A study of potential, feasibility, costs and environmental performance of a biomethane solution for public transport2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Like many large cities, Johannesburg faces several sustainability challenges such as unsustainable use of natural resources, emissions contributing to environmental- and waste related problems. The city is a provincial transport centre, and the transport sector is responsible for a large share of the city’s energy demand and emissions. To approach several of these challenges simultaneously the City of Johannesburg considers the possibilities to use renewable, waste-based, fuel for public transport and has shown a great interest in how Sweden produce and use biogas. 

    In this study an early assessment of the potential, feasibility, economic costs and environmental performance of a waste-based biomethane solution in Johannesburg is performed, with the purpose to fuel a public transport bus fleet. This has been done by developing and using a multi-criteria analysis (MCA). The MCA consists of four categories: potential, feasibility, economic costs and environmental performance. These categories consist of 17 key areas with corresponding key questions and indicators with relating scales used for scoring the indicators. The indicators and scales help identify what information is necessary to collect for the assessment. Furthermore, an Excel tool and a questionnaire are provided to serve as a help when performing the assessment. The feasibility assessment is conducted both for the city as a whole as well as for individual feedstocks. Information for the studied case was gathered from a literature study and interviews in Johannesburg with local experts and potential stakeholders. 

    The identified feedstocks in Johannesburg are landfill gas, waste from a fruit and vegetable market, organic household waste, abattoir waste, waste from the food industry, waste management companies and sewage sludge from the wastewater treatment plants (WWTP). The identified biomass potential is 230,000 tonnes of dry matter/year, generating a total biomethane potential of 91,600,000 Nm3/year, which is enough to fuel almost 2700 buses. In the process of producing biogas, digestate is created. The digestate can be used as biofertilizer and recycle nutrients when used in agriculture. The complete biomass potential in Johannesburg was not identified meaning there is additional potential, from e.g. other food industries, than examined in this study. 

    Assuming that all feedstocks except for landfill gas and WWTP sludge are processed in one biogas plant, the investment cost for this biogas plant is 28 million USD and the total operation and maintenance cost is 1.4 million USD per year. The investment cost and yearly operating cost for the upgrading plant is 43 million USD and 2.4 million USD respectively. Finally, the distribution costs were calculated, including compression and investment in vessels. The investment and operational costs for compression is 7.4 million USD and 220,000 USD/year respectively. The investment cost for the vessels was calculated to 15 million USD and the operational costs of the distribution 16 million USD/year. Consideration should be given to the fact that the numbers used when calculating these costs comes with uncertainties.

    Most indicators in the feasibility assessment of the city as a whole were given the score Poor, but some indicators were scored Satisfactory or Good. The assessment of the individual feedstocks led to a ranking of the most to the least feasible feedstocks where the waste from the fruit and vegetable market and the municipal household waste are considered being in the top. This assessment also shows the feedstocks are in general quite suitable for biomethane production. The issue is the lack of economic and legislative support and strategies not working in favour of biomethane. These are areas that can be improved by the local or national government to give better conditions for production of biomethane in the future. Some examples of this are a proposed landfill tax or landfill ban as well as a closing of the landfills due to the lack of new land. This could all contribute to better conditions for biomethane solutions in the future. Main identified hinders are electricity generation from biogas as a competitor with biomethane, and a general lack of knowledge about biogas and biomethane, from the high-level decision makers to a workforce lacking skills about construction and operation of biogas plants. 

  • 19.
    Speda, Jutta
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Johansson, Mikaela
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Odnell, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Karshult Municipal Waste Water Treatment Plant, Sweden.
    Karlsson, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. InZymes Biotech AB, Gjuterigatan 1B, S-58273 Linkoping, Sweden.
    Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes2017In: Biotechnology for Biofuels, ISSN 1754-6834, E-ISSN 1754-6834, Vol. 10, article id 129Article in journal (Refereed)
    Abstract [en]

    Background: Enzymatic treatment of lignocellulosic material for increased biogas production has so far focused on pretreatment methods. However, often combinations of enzymes and different physicochemical treatments are necessary to achieve a desired effect. This need for additional energy and chemicals compromises the rationale of using enzymes for low energy treatment to promote biogas production. Therefore, simpler and less energy intensive in situ anaerobic digester treatment with enzymes is desirable. However, investigations in which exogenous enzymes are added to treat the material in situ have shown mixed success, possibly because the enzymes used originated from organisms not evolutionarily adapted to the environment of anaerobic digesters. In this study, to examine the effect of enzymes endogenous to methanogenic microbial communities, cellulolytic enzymes were instead overproduced and collected from a dedicated methanogenic microbial community. By this approach, a solution with very high endogenous microbial cellulolytic activity was produced and tested for the effect on biogas production from lignocellulose by in situ anaerobic digester treatment. Results: Addition of enzymes, endogenous to the environment of a mixed methanogenic microbial community, to the anaerobic digestion of ensiled forage ley resulted in significantly increased rate and yield of biomethane production. The enzyme solution had an instant effect on more readily available cellulosic material. More importantly, the induced enzyme solution also affected the biogas production rate from less accessible cellulosic material in a second slower phase of lignocellulose digestion. Notably, this effect was maintained throughout the experiment to completely digested lignocellulosic substrate. Conclusions: The induced enzyme solution collected from a microbial methanogenic community contained enzymes that were apparently active and stable in the environment of anaerobic digestion. The enzymatic activity had a profound effect on the biogas production rate and yield, comparable with the results of many pretreatment methods. Thus, application of such enzymes could enable efficient low energy in situ anaerobic digester treatment for increased biomethane production from lignocellulosic material.

  • 20.
    Tran, David
    Linköping University, The Tema Institute, Tema Environmental Change.
    Hydrodynamic cavitation applied to food waste anaerobic digestion2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Innovative pre-treatment methods applied to anaerobic digestion (AD) have developed to enhance the methane yields of food waste. This study investigates hydrodynamic cavitation, which induce disintegration of biomass through microbubble formations, impact on food waste solubilisation and methane production during following AD. Two different sub-streams of food waste (before and after the digestion) pre-treated by hydrodynamic cavitation were evaluated in lab scale for its potential for implementation in a full scale practise. First, the optimum condition for the hydrodynamic cavitation device was determined based on the solids and chemical changes in the food waste. The exposure time was referred to as the number of cycles that the sample was recirculated through the cavitation inducer’s region. The optimal cycles were later tested as a pre-treatment step in a BMP test and semi-CSTR lab scale operation. The tests showed that sufficient impact from the hydrodynamic cavitation was achieved by 20 cavitation cycles. Due to the pre-treatment, food waste solubilisation increased, up to 400% and 48% in terms of turbidity and sCOD measurements, respectively. In the BMP test, the treated samples improved the methane yield by 9-13%, where the digested food waste increased its kinetic constant by 60%. Fresh food waste was then processed in the semi-CSTR operation and the methane yield was increased by up to 17% with hydrodynamic cavitation for two reference periods. These promising results suggest that the hydrodynamic cavitation can be implemented for full scale production with food waste.

  • 21.
    Wetterlund, Elisabeth
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Pettersson, Karin
    Chalmers University of Technology.
    Mossberg, Johanna
    SP Technical Research Institute of Sweden .
    Torén, Johan
    SP Technical Research Institute of Sweden .
    Hoffstedt, Christian
    Innventia, Stockholm.
    von Schenck, Anna
    Innventia, Stockholm.
    Berglin, Niklas
    Innventia, Stockholm.
    Lundmark, Robert
    Luleå University of Technology.
    Lundgren, Joakim
    Luleå University of Technology.
    Leduc, Sylvain
    International Institute of Applied Systems Analysis (IIASA).
    Kindermann, Georg
    International Institute of Applied Systems Analysis (IIASA).
    Optimal localisation of next generation biofuel production in Sweden2013Report (Other academic)
    Abstract [en]

    With a high availability of lignocellulosic biomass and various types of cellulosic by-products, as well as a large number of industries, Sweden is a country of great interest for future large scale production of sustainable, next generation biofuels. This is most likely also a necessity as Sweden has the ambition to be independent of fossil fuels in the transport sector by the year 2030 and completely fossil free by 2050. In order to reach competitive biofuel production costs, plants with large production capacities are likely to be required. Feedstock intake capacities in the range of about 1-2 million tonnes per year, corresponding to a biomass feed of 300-600 MW, can be expected, which may lead to major logistical challenges. To enable expansion of biofuel production in such large plants, as well as provide for associated distribution requirements, it is clear that substantial infrastructure planning will be needed. The geographical location of the production plant facilities is therefore of crucial importance and must be strategic to minimise the transports of raw material as well as of final product. Competition for the available feedstock, from for example forest industries and CHP plants (combined heat and power) further complicates the localisation problem. Since the potential for an increased biomass utilisation is limited, high overall resource efficiency is of great importance. Integration of biofuel production processes in existing industries or in district heating systems may be beneficial from several aspects, such as opportunities for efficient heat integration, feedstock and equipment integration, as well as access to existing experience and know-how.

    This report describes the development of BeWhere Sweden, a geographically explicit optimisation model for localisation of next generation biofuel production plants in Sweden. The main objective of developing such a model is to be able to assess production plant locations that are robust to varying boundary conditions, in particular regarding energy market prices, policy instruments, investment costs, feedstock competition and integration possibilities with existing energy systems. This report also presents current and future Swedish biomass resources as well as a compilation of three consistent future energy scenarios.

    BeWhere is based on Mixed Integer Linear Programming (MILP) and is written in the commercial software GAMS, using CPLEX as a solver. The model minimises the cost of the entire studied system, including costs and revenues for biomass harvest and transportation, production plants, transportation and delivery of biofuels, sales of co-products, and economic policy instruments. The system cost is minimised subject to constraints regarding, for example, biomass supply, biomass demand, import/export of biomass, production plant operation and biofuel demand. The model will thus choose the least costly pathways from one set of feedstock supply points to a specific biofuel production plant and further to a set of biofuel demand points, while meeting the demand for biomass in other sectors.

    BeWhere has previously been developed by the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria and Luleå University of Technology and has been used in several studies on regional and national levels, as well as on the European level. However, none of the previous model versions has included site-specific conditions in existing industries as potential locations for industrially integrated next generation biofuel production. Furthermore, they also usually only consider relatively few different production routes. In this project, bottom-up studies of integrated biofuel production have been introduced into a top-down model and taken to a higher system level, and detailed, site-specific input data of potential locations for integrated biofuel production has been included in the model.

    This report covers the first stages of model development of BeWhere Sweden. The integration possibilities have been limited to the forest industry and a few district heating networks, and the feedstocks to biomass originating from the forest. The number of biofuel production technologies has also been limited to three gasification-based concepts producing DME, and two hydrolysis- and fermentation-based concepts producing ethanol. None of the concepts considered is yet commercial on the scale envisioned here.

    Preliminary model runs have been performed, with the main purpose to identify factors with large influence on the results, and to detect areas in need of further development and refinement. Those runs have been made using a future technology perspective but with current energy market conditions and biomass supply and demand. In the next stage of model development different roadmap scenarios will be modelled and analysed. Three different roadmap scenarios that describe consistent assessments of the future development concerning population, transport and motor fuel demands, biomass resources, biomass demand in other industry sectors, energy and biomass market prices etc. have been constructed within this project and are presented in this report. As basis for the scenarios the report “Roadmap 2050” by the Swedish Environmental Protection Agency (EPA) has been used, using 2030 as a target year for the scenarios. Roadmap scenario 1 is composed to resemble “Roadmap 2050” Scenario 1. Roadmap scenario 2 represents an alternative development with more protected forest and less available biomass resources, but a larger amount of biofuels in the transport system, partly due to a higher transport demand compared to Roadmap scenario 1. Finally Roadmap scenario 3 represents a more “business as usual” scenario with more restrictive assumptions compared to the other two scenarios.

    In total 55 potential biofuel plant sites have been included at this stage of model development. Of this 32 sites are pulp/paper mills, of which 24 have chemical pulp production (kraft process) while eight produce only mechanical pulp and/or paper. Seven of the pulp mills are integrated with a sawmill, and 18 additional stand-alone sawmills are also included, as are five district heating systems. The pulp and paper mills and sawmills are included both as potential biofuel plant sites, as biomass demand sites regarding wood and bioenergy, and as biomass supply sites regarding surplus by-products. District heating systems are considered both regarding bioenergy demand and as potential plant sites.

    In the preliminary model runs, biofuel production integrated in chemical pulp mills via black liquor gasification (BLG) was heavily favoured. The resulting total number of required production plants and the total biomass feedstock volumes to reach a certain biofuel share target are considerably lower when BLG is considered. District heating systems did not constitute optimal plant locations with the plant positions and heat revenue levels assumed in this study. With higher heat revenues, solid biomass gasification (BMG) with DME production was shown to be potentially interesting. With BLG considered as a production alternative, however, extremely high heat revenues would be needed to make BMG in district heating systems competitive.

    The model allows for definition of biofuel share targets for Sweden overall, or to be fulfilled in each county. With targets set for Sweden overall, plant locations in the northern parts of Sweden were typically favoured, which resulted in saturation of local biofuel markets and no biofuel use in the southern parts. When biofuels needed to be distributed to all parts of Sweden, the model selected a more even distribution of production plants, with plants also in the southern parts. Due to longer total transport distances and non-optimal integration possibilities, the total resulting system cost was higher when all counties must fulfil the biofuel share target. The total annual cost to fulfil a certain biofuel target would also be considerably higher without BLG in the system, as would the total capital requirement. This however presumes that alternative investments would otherwise be undertaken, such as investments in new recovery boilers. Without alternative investments the difference between a system with BLG and a system without BLG would be less pronounced.

    In several cases the model located two production plants very close to each other, which would create a high biomass demand on a limited geographic area. The reason is that no restrictions on transport volumes have yet been implemented in the model. Further, existing onsite co-operations between for example sawmills and pulp mills have not always been captured by the input data used for this report, which can cause the consideration of certain locations as two separate plant sites, when in reality they are already integrated. It is also important to point out that some of the mill specific data (obtained from the Swedish Forest Industries Federation’s environmental database) was identified to contain significant errors, which could affect the results related to the plant allocations suggested in this report.

    Due to the early model development stage and the exclusion of for example many potential production routes and feedstock types, the model results presented in this report must be considered as highly preliminary. A number of areas in need of supplementing have been identified during the work with this report. Examples are addition of more industries and plant sites (e.g. oil refineries), increasing the number of other production technologies and biofuels (e.g. SNG, biogas, methanol and synthetic diesel), inclusion of gas distribution infrastructures, and explicit consideration of import and export of biomass and biofuel. Agricultural residues and energy crops for biogas production are also considered to be a very important and interesting completion to the model. Furthermore, inclusion of intermediate products such as torrefied biomass, pyrolysis oil and lignin extracted from chemical pulp mills would make it possible to include new production chains that are currently of significant interest for technology developers. As indicated above, the quality of some input data also needs to be improved before any definite conclusions regarding next generation biofuel plant localisations can be drawn.Due to the early model development stage and the exclusion of for example many potential production routes and feedstock types, the model results presented in this report must be considered as highly preliminary. A number of areas in need of supplementing have been identified during the work with this report. Examples are addition of more industries and plant sites (e.g. oil refineries), increasing the number of other production technologies and biofuels (e.g. SNG, biogas, methanol and synthetic diesel), inclusion of gas distribution infrastructures, and explicit consideration of import and export of biomass and biofuel. Agricultural residues and energy crops for biogas production are also considered to be a very important and interesting completion to the model. Furthermore, inclusion of intermediate products such as torrefied biomass, pyrolysis oil and lignin extracted from chemical pulp mills would make it possible to include new production chains that are currently of significant interest for technology developers. As indicated above, the quality of some input data also needs to be improved before any definite conclusions regarding next generation biofuel plant localisations can be drawn.

    A further developed BeWhere Sweden model has the potential for being a valuable tool for simulation and analysis of the Swedish energy system, including the industry and transport sectors. The model can for example be used to analyse different biofuel scenarios and estimate cost effective biofuel production plant locations, required investments and costs to meet a certain biofuel demand. Today, concerned ministries and agencies base their analyses primary on results from the models MARKAL and EMEC, but none of these consider the spatial distribution of feedstock, facilities and energy demands. Sweden is a widespread country with long transport distances, and where logistics and localisation of production plants are crucial for the overall efficiency. BeWhere Sweden considers this and may contribute with valuable input that can be used to complement and validate results from MARKAL and EMEC; thus testing the feasibility of these model results. This can be of value for different biofuel production stakeholders as well as for government and policy makers. Further, Sweden is also of considerable interest for future next generation biofuel production from a European perspective. By introducing a link to existing models that operate on a European level, such as BeWhere Europe and the related IIASA model GLOBIOM, BeWhere Sweden could also be used to provide results of value for EU policies and strategies.

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf