Open this publication in new window or tab >>Show others...
2015 (English)Manuscript (preprint) (Other academic)
Abstract [en]
The ultimate cause of death for many cancer patients is the spread of the cancer via metastasis. Even so, there are still a lack of knowledge regarding the metastasis process. This study was performed to investigate the role of metastamirs in exosomes and their metastatic patterns. We used the well-established isogeneic murine cancer model of low metastatic 67NR cells, mimicking luminal/basal breast tumors, and highly metastatic 4T1 cells with characteristics of basal breast tumors. We studied the exosomal properties and pre-metastatic effects in this metastasis model and compared human materials and exosomes of several other tumor types. Our data clearly demonstrated that exosomes from the highly metastatic cells home to the metastatic organs of their parental cells whereas exosomes from cells with low metastatic potential mostly located to lymph nodes. The exosome protein cargos also resembled their parental cells and potentially affects their target organs, and cells, differently. Furthermore, the exosomes from the highly metastatic cells had a more pronounced effect on tumor growth and pre-metastatic changes than the low metastatic exosomes. The microRNA-18a, a predictor of metastasis, was present to a higher extent in metastatic exosomes as compared to low metastatic exosomes, and altered the tumor progressive properties. Our findings support the role of exomirs as important players in the metastatic process, the value as biomarkers and potential therapeutic targets.
National Category
Cancer and Oncology Cell and Molecular Biology Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:liu:diva-122829 (URN)
2015-11-262015-11-262018-01-10Bibliographically approved