liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Hall, P
    et al.
    Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden.
    Peng, L
    Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden.
    Tajvidi, N
    Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden.
    On prediction intervals based on predictive likelihood or bootstrap methods1999In: Biometrika, ISSN 0006-3444, E-ISSN 1464-3510, Vol. 86, no 4, p. 871-880Article in journal (Refereed)
    Abstract [en]

    We argue that prediction intervals based on predictive likelihood do not correct for curvature with respect to the parameter value when they implicitly approximate an unknown probability density. Partly as a result of this difficulty, the order of coverage error associated with predictive intervals and predictive limits is equal to only the inverse of sample size. In this respect those methods do not improve on the simpler,'naive' or 'estimative' approach. Moreover, in cases of practical importance the latter can be preferable, in terms of both the size and sign of coverage error. We show that bootstrap calibration of both naive and predictive-likelihood approaches increases coverage accuracy of prediction intervals by an order of magnitude, and, in the case of naive intervals, preserves that method's numerical and analytical simplicity. Therefore, we argue, the bootstrap-calibrated naive approach is a particularly competitive alternative to more conventional, but more complex, techniques based on predictive likelihood.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf